Abstract:Federated learning (FL) on graph-structured data typically faces non-IID challenges, particularly in scenarios where each client holds a distinct subgraph sampled from a global graph. In this paper, we introduce Federated learning with Auxiliary projections (FedAux), a personalized subgraph FL framework that learns to align, compare, and aggregate heterogeneously distributed local models without sharing raw data or node embeddings. In FedAux, each client jointly trains (i) a local GNN and (ii) a learnable auxiliary projection vector (APV) that differentiably projects node embeddings onto a 1D space. A soft-sorting operation followed by a lightweight 1D convolution refines these embeddings in the ordered space, enabling the APV to effectively capture client-specific information. After local training, these APVs serve as compact signatures that the server uses to compute inter-client similarities and perform similarity-weighted parameter mixing, yielding personalized models while preserving cross-client knowledge transfer. Moreover, we provide rigorous theoretical analysis to establish the convergence and rationality of our design. Empirical evaluations across diverse graph benchmarks demonstrate that FedAux substantially outperforms existing baselines in both accuracy and personalization performance.
Abstract:Data Augmentation (DA) technique has been widely implemented in the computer vision field to relieve the data shortage, while the DA in Medical Image Analysis (MIA) is still mostly experience-driven. Here, we develop a plug-and-use DA method, named MedAugment, to introduce the automatic DA argumentation to the MIA field. To settle the difference between natural images and medical images, we divide the augmentation space into pixel augmentation space and spatial augmentation space. A novel operation sampling strategy is also proposed when sampling DA operations from the spaces. To demonstrate the performance and universality of MedAugment, we implement extensive experiments on four classification datasets and three segmentation datasets. The results show that our MedAugment outperforms most state-of-the-art DA methods. This work shows that the plug-and-use MedAugment may benefit the MIA community. Code is available at https://github.com/NUS-Tim/MedAugment_Pytorch.