Abstract:Leveraging large language models in real-world settings often entails a need to utilize domain-specific data and tools in order to follow the complex regulations that need to be followed for acceptable use. Within financial sectors, modern enterprises increasingly rely on Retrieval-Augmented Generation (RAG) systems to address complex compliance requirements in financial document workflows. However, existing solutions struggle to account for the inherent heterogeneity of data (e.g., text, tables, diagrams) and evolving nature of regulatory standards used in financial filings, leading to compromised accuracy in critical information extraction. We propose the FinSage framework as a solution, utilizing a multi-aspect RAG framework tailored for regulatory compliance analysis in multi-modal financial documents. FinSage introduces three innovative components: (1) a multi-modal pre-processing pipeline that unifies diverse data formats and generates chunk-level metadata summaries, (2) a multi-path sparse-dense retrieval system augmented with query expansion (HyDE) and metadata-aware semantic search, and (3) a domain-specialized re-ranking module fine-tuned via Direct Preference Optimization (DPO) to prioritize compliance-critical content. Extensive experiments demonstrate that FinSage achieves an impressive recall of 92.51% on 75 expert-curated questions derived from surpasses the best baseline method on the FinanceBench question answering datasets by 24.06% in accuracy. Moreover, FinSage has been successfully deployed as financial question-answering agent in online meetings, where it has already served more than 1,200 people.
Abstract:Aligned Large Language Models (LLMs) have demonstrated remarkable performance across various tasks. However, LLMs remain susceptible to jailbreak adversarial attacks, where adversaries manipulate prompts to elicit malicious responses that aligned LLMs should have avoided. Identifying these vulnerabilities is crucial for understanding the inherent weaknesses of LLMs and preventing their potential misuse. One pioneering work in jailbreaking is the GCG attack, a discrete token optimization algorithm that seeks to find a suffix capable of jailbreaking aligned LLMs. Despite the success of GCG, we find it suboptimal, requiring significantly large computational costs, and the achieved jailbreaking performance is limited. In this work, we propose Faster-GCG, an efficient adversarial jailbreak method by delving deep into the design of GCG. Experiments demonstrate that Faster-GCG can surpass the original GCG with only 1/10 of the computational cost, achieving significantly higher attack success rates on various open-source aligned LLMs. In addition, We demonstrate that Faster-GCG exhibits improved attack transferability when testing on closed-sourced LLMs such as ChatGPT.