Abstract:Despite their impressive capabilities, Large Language Models struggle with generalisation beyond their training distribution, often exhibiting sophisticated pattern interpolation rather than true abstract reasoning (extrapolation). In this work, we approach this limitation through the lens of Information Bottleneck (IB) theory, which posits that model generalisation emerges from an optimal balance between input compression and retention of predictive information in latent representations. We prove using IB theory that decoder-only Transformers are inherently constrained in their ability to form task-optimal sequence representations. We then use this result to demonstrate that periodic global transformation of the internal sequence-level representations (KV cache) is a necessary computational step for improving Transformer generalisation in reasoning tasks. Based on these theoretical insights, we propose a modification to the Transformer architecture, in the form of an additional module that globally rewrites the KV cache at periodic intervals, shifting its capacity away from memorising input prefixes and toward encoding features most useful for predicting future tokens. Our model delivers substantial gains on mathematical reasoning benchmarks, outperforming both vanilla Transformers with up to 3.5x more parameters, as well as heuristic-driven pruning mechanisms for cache compression. Our approach can be seen as a principled generalisation of existing KV-cache compression methods; whereas such methods focus solely on compressing input representations, they often do so at the expense of retaining predictive information, and thus their capabilities are inherently bounded by those of an unconstrained model. This establishes a principled framework to manipulate Transformer memory using information theory, addressing fundamental reasoning limitations that scaling alone cannot overcome.
Abstract:Causal dynamics models (CDMs) have demonstrated significant potential in addressing various challenges in reinforcement learning. To learn CDMs, recent studies have performed causal discovery to capture the causal dependencies among environmental variables. However, the learning of CDMs is still confined to small-scale environments due to computational complexity and sample efficiency constraints. This paper aims to extend CDMs to large-scale object-oriented environments, which consist of a multitude of objects classified into different categories. We introduce the Object-Oriented CDM (OOCDM) that shares causalities and parameters among objects belonging to the same class. Furthermore, we propose a learning method for OOCDM that enables it to adapt to a varying number of objects. Experiments on large-scale tasks indicate that OOCDM outperforms existing CDMs in terms of causal discovery, prediction accuracy, generalization, and computational efficiency.
Abstract:Generating explanations for reinforcement learning (RL) is challenging as actions may produce long-term effects on the future. In this paper, we develop a novel framework for explainable RL by learning a causal world model without prior knowledge of the causal structure of the environment. The model captures the influence of actions, allowing us to interpret the long-term effects of actions through causal chains, which present how actions influence environmental variables and finally lead to rewards. Different from most explanatory models which suffer from low accuracy, our model remains accurate while improving explainability, making it applicable in model-based learning. As a result, we demonstrate that our causal model can serve as the bridge between explainability and learning.