Abstract:The sharing of external data has become a strong demand of financial institutions, but the privacy issue has led to the difficulty of interconnecting different platforms and the low degree of data openness. To effectively solve the privacy problem of financial data in trans-border flow and sharing, to ensure that the data is available but not visible, to realize the joint portrait of all kinds of heterogeneous data of business organizations in different industries, we propose a Heterogeneous Federated Graph Neural Network (HFGNN) approach. In this method, the distribution of heterogeneous business data of trans-border organizations is taken as subgraphs, and the sharing and circulation process among subgraphs is constructed as a statistically heterogeneous global graph through a central server. Each subgraph learns the corresponding personalized service model through local training to select and update the relevant subset of subgraphs with aggregated parameters, and effectively separates and combines topological and feature information among subgraphs. Finally, our simulation experimental results show that the proposed method has higher accuracy performance and faster convergence speed than existing methods.
Abstract:Multi-hop question answering (QA) presents a considerable challenge for Retrieval-Augmented Generation (RAG), requiring the structured decomposition of complex queries into logical reasoning paths and the generation of dependable intermediate results. However, deviations in reasoning paths or errors in intermediate results, which are common in current RAG methods, may propagate and accumulate throughout the reasoning process, diminishing the accuracy of the answer to complex queries. To address this challenge, we propose the Plan-then-Act-and-Review (PAR RAG) framework, which is organized into three key stages: planning, act, and review, and aims to offer an interpretable and incremental reasoning paradigm for accurate and reliable multi-hop question answering by mitigating error propagation.PAR RAG initially applies a top-down problem decomposition strategy, formulating a comprehensive plan that integrates multiple executable steps from a holistic viewpoint. This approach avoids the pitfalls of local optima common in traditional RAG methods, ensuring the accuracy of the entire reasoning path. Subsequently, PAR RAG incorporates a plan execution mechanism based on multi-granularity verification. By utilizing both coarse-grained similarity information and fine-grained relevant data, the framework thoroughly checks and adjusts intermediate results, ensuring process accuracy while effectively managing error propagation and amplification. Experimental results on multi-hop QA datasets demonstrate that the PAR RAG framework substantially outperforms existing state-of-the-art methods in key metrics, including EM and F1 scores.
Abstract:It is a challenging problem to predict trends of futures prices with traditional econometric models as one needs to consider not only futures' historical data but also correlations among different futures. Spatial-temporal graph neural networks (STGNNs) have great advantages in dealing with such kind of spatial-temporal data. However, we cannot directly apply STGNNs to high-frequency future data because future investors have to consider both the long-term and short-term characteristics when doing decision-making. To capture both the long-term and short-term features, we exploit more label information by designing four heterogeneous tasks: price regression, price moving average regression, price gap regression (within a short interval), and change-point detection, which involve both long-term and short-term scenes. To make full use of these labels, we train our model in a continual manner. Traditional continual GNNs define the gradient of prices as the parameter important to overcome catastrophic forgetting (CF). Unfortunately, the losses of the four heterogeneous tasks lie in different spaces. Hence it is improper to calculate the parameter importance with their losses. We propose to calculate parameter importance with mutual information between original observations and the extracted features. The empirical results based on 49 commodity futures demonstrate that our model has higher prediction performance on capturing long-term or short-term dynamic change.