National Innovation Institute of Defense Technology, Chinese Academy of Military Science
Abstract:As a powerful way of realizing semi-supervised segmentation, the cross supervision method learns cross consistency based on independent ensemble models using abundant unlabeled images. However, the wrong pseudo labeling information generated by cross supervision would confuse the training process and negatively affect the effectiveness of the segmentation model. Besides, the training process of ensemble models in such methods also multiplies the cost of computation resources and decreases the training efficiency. To solve these problems, we propose a novel cross supervision method, namely uncertainty-guided self cross supervision (USCS). In addition to ensemble models, we first design a multi-input multi-output (MIMO) segmentation model which can generate multiple outputs with shared model and consequently impose consistency over the outputs, saving the cost on parameters and calculations. On the other hand, we employ uncertainty as guided information to encourage the model to focus on the high confident regions of pseudo labels and mitigate the effects of wrong pseudo labeling in self cross supervision, improving the performance of the segmentation model. Extensive experiments show that our method achieves state-of-the-art performance while saving 40.5% and 49.1% cost on parameters and calculations.
Abstract:Few-shot segmentation enables the model to recognize unseen classes with few annotated examples. Most existing methods adopt prototype learning architecture, where support prototype vectors are expanded and concatenated with query features to perform conditional segmentation. However, such framework potentially focuses more on query features while may neglect the similarity between support and query features. This paper proposes a contrastive enhancement approach using latent prototypes to leverage latent classes and raise the utilization of similarity information between prototype and query features. Specifically, a latent prototype sampling module is proposed to generate pseudo-mask and novel prototypes based on features similarity. The module conveniently conducts end-to-end learning and has no strong dependence on clustering numbers like cluster-based method. Besides, a contrastive enhancement module is developed to drive models to provide different predictions with the same query features. Our method can be used as an auxiliary module to flexibly integrate into other baselines for a better segmentation performance. Extensive experiments show our approach remarkably improves the performance of state-of-the-art methods for 1-shot and 5-shot segmentation, especially outperforming baseline by 5.9% and 7.3% for 5-shot task on Pascal-5^i and COCO-20^i. Source code is available at https://github.com/zhaoxiaoyu1995/CELP-Pytorch
Abstract:Temperature field reconstruction is essential for analyzing satellite heat reliability. As a representative machine learning model, the deep convolutional neural network (DCNN) is a powerful tool for reconstructing the satellite temperature field. However, DCNN needs a lot of labeled data to learn its parameters, which is contrary to the fact that actual satellite engineering can only acquire noisy unlabeled data. To solve the above problem, this paper proposes an unsupervised method, i.e., the physics-informed deep Monte Carlo quantile regression method, for reconstructing temperature field and quantifying the aleatoric uncertainty caused by data noise. For one thing, the proposed method combines a deep convolutional neural network with the known physics knowledge to reconstruct an accurate temperature field using only monitoring point temperatures. For another thing, the proposed method can quantify the aleatoric uncertainty by the Monte Carlo quantile regression. Based on the reconstructed temperature field and the quantified aleatoric uncertainty, this paper models an interval multilevel Bayesian Network to analyze satellite heat reliability. Two case studies are used to validate the proposed method.
Abstract:For the temperature field reconstruction (TFR), a complex image-to-image regression problem, the convolutional neural network (CNN) is a powerful surrogate model due to the convolutional layer's good image feature extraction ability. However, a lot of labeled data is needed to train CNN, and the common CNN can not quantify the aleatoric uncertainty caused by data noise. In actual engineering, the noiseless and labeled training data is hardly obtained for the TFR. To solve these two problems, this paper proposes a deep Monte Carlo quantile regression (Deep MC-QR) method for reconstructing the temperature field and quantifying aleatoric uncertainty caused by data noise. On the one hand, the Deep MC-QR method uses physical knowledge to guide the training of CNN. Thereby, the Deep MC-QR method can reconstruct an accurate TFR surrogate model without any labeled training data. On the other hand, the Deep MC-QR method constructs a quantile level image for each input in each training epoch. Then, the trained CNN model can quantify aleatoric uncertainty by quantile level image sampling during the prediction stage. Finally, the effectiveness of the proposed Deep MC-QR method is validated by many experiments, and the influence of data noise on TFR is analyzed.
Abstract:Physical field reconstruction is highly desirable for the measurement and control of engineering systems. The reconstruction of the temperature field from limited observation plays a crucial role in thermal management for electronic equipment. Deep learning has been employed in physical field reconstruction, whereas the accurate estimation for the regions with large gradients is still diffcult. To solve the problem, this work proposes a novel deep learning method based on patchwise training to reconstruct the temperature field of electronic equipment accurately from limited observation. Firstly, the temperature field reconstruction (TFR) problem of the electronic equipment is modeled mathematically and transformed as an image-to-image regression task. Then a patchwise training and inference framework consisting of an adaptive UNet and a shallow multilayer perceptron (MLP) is developed to establish the mapping from the observation to the temperature field. The adaptive UNet is utilized to reconstruct the whole temperature field while the MLP is designed to predict the patches with large temperature gradients. Experiments employing finite element simulation data are conducted to demonstrate the accuracy of the proposed method. Furthermore, the generalization is evaluated by investigating cases under different heat source layouts, different power intensities, and different observation point locations. The maximum absolute errors of the reconstructed temperature field are less than 1K under the patchwise training approach.
Abstract:Temperature field inversion of heat-source systems (TFI-HSS) with limited observations is essential to monitor the system health. Although some methods such as interpolation have been proposed to solve TFI-HSS, those existing methods ignore correlations between data constraints and physics constraints, causing the low precision. In this work, we develop a physics-informed neural network-based temperature field inversion (PINN-TFI) method to solve the TFI-HSS task and a coefficient matrix condition number based position selection of observations (CMCN-PSO) method to select optima positions of noise observations. For the TFI-HSS task, the PINN-TFI method encodes constrain terms into the loss function, thus the task is transformed into an optimization problem of minimizing the loss function. In addition, we have found that noise observations significantly affect reconstruction performances of the PINN-TFI method. To alleviate the effect of noise observations, the CMCN-PSO method is proposed to find optimal positions, where the condition number of observations is used to evaluate positions. The results demonstrate that the PINN-TFI method can significantly improve prediction precisions and the CMCN-PSO method can find good positions to acquire a more robust temperature field.
Abstract:Recently, surrogate models based on deep learning have attracted much attention for engineering analysis and optimization. As the construction of data pairs in most engineering problems is time-consuming, data acquisition is becoming the predictive capability bottleneck of most deep surrogate models, which also exists in surrogate for thermal analysis and design. To address this issue, this paper develops a physics-informed convolutional neural network (CNN) for the thermal simulation surrogate. The network can learn a mapping from heat source layout to the steady-state temperature field without labeled data, which equals solving an entire family of partial difference equations (PDEs). To realize the physics-guided training without labeled data, we employ the heat conduction equation and finite difference method to construct the loss function. Since the solution is sensitive to boundary conditions, we properly impose hard constraints by padding in the Dirichlet and Neumann boundary conditions. In addition, the neural network architecture is well-designed to improve the prediction precision of the problem at hand, and pixel-level online hard example mining is introduced to overcome the imbalance of optimization difficulty in the computation domain. The experiments demonstrate that the proposed method can provide comparable predictions with numerical method and data-driven deep learning models. We also conduct various ablation studies to investigate the effectiveness of the network component and training methods proposed in this paper.
Abstract:Physical adversarial attacks in object detection have attracted increasing attention. However, most previous works focus on hiding the objects from the detector by generating an individual adversarial patch, which only covers the planar part of the vehicle's surface and fails to attack the detector in physical scenarios for multi-view, long-distance and partially occluded objects. To bridge the gap between digital attacks and physical attacks, we exploit the full 3D vehicle surface to propose a robust Full-coverage Camouflage Attack (FCA) to fool detectors. Specifically, we first try rendering the non-planar camouflage texture over the full vehicle surface. To mimic the real-world environment conditions, we then introduce a transformation function to transfer the rendered camouflaged vehicle into a photo-realistic scenario. Finally, we design an efficient loss function to optimize the camouflage texture. Experiments show that the full-coverage camouflage attack can not only outperform state-of-the-art methods under various test cases but also generalize to different environments, vehicles, and object detectors.
Abstract:Temperature field reconstruction of heat source systems (TFR-HSS) with limited monitoring sensors occurred in thermal management plays an important role in real time health detection system of electronic equipment in engineering. However, prior methods with common interpolations usually cannot provide accurate reconstruction performance as needed. In addition, there exists no public dataset for widely research of reconstruction methods to further boost the reconstruction performance and engineering applications. To overcome this problem, this work constructs a novel dataset, namely Temperature Field Reconstruction Dataset (TFRD), for TFR-HSS task with commonly used methods, including the interpolation methods and the machine learning based methods, as baselines to advance the research over temperature field reconstruction. First, the TFR-HSS task is mathematically modelled from real-world engineering problem and four types of numerically modellings have been constructed to transform the problem into discrete mapping forms. Besides, this work selects three typical reconstruction problem over heat-source systems with different heat-source information and boundary conditions, and generate the training and testing samples for further research. Finally, a comprehensive review of the prior methods for TFR-HSS task as well as recent widely used deep learning methods is given and a performance analysis of typical methods is provided on TFRD, which can be served as the baseline results on this benchmark.
Abstract:Deep neural networks (DNNs) have successfully learned useful data representations in various tasks, however, assessing the reliability of these representations remains a challenge. Deep Ensemble is widely considered the state-of-the-art method for uncertainty estimation, but it is very expensive to train and test. MC-Dropout is another alternative method, which is less expensive but lacks the diversity of predictions. To get more diverse predictions in less time, we introduce Randomized ReLU Activation (RRA) framework. Under the framework, we propose two strategies, MC-DropReLU and MC-RReLU, to estimate uncertainty. Instead of randomly dropping some neurons of the network as in MC-Dropout, the RRA framework adds randomness to the activation function module, making the outputs diverse. As far as we know, this is the first attempt to add randomness to the activation function module to generate predictive uncertainty. We analyze and compare the output diversity of MC-Dropout and our method from the variance perspective and obtain the relationship between the hyperparameters and output diversity in the two methods. Moreover, our method is simple to implement and does not need to modify the existing model. We experimentally validate the RRA framework on three widely used datasets, CIFAR10, CIFAR100, and TinyImageNet. The experiments demonstrate that our method has competitive performance but is more favorable in training time and memory requirements.