Abstract:Camera pose refinement aims at improving the accuracy of initial pose estimation for applications in 3D computer vision. Most refinement approaches rely on 2D-3D correspondences with specific descriptors or dedicated networks, requiring reconstructing the scene again for a different descriptor or fully retraining the network for each scene. Some recent methods instead infer pose from feature similarity, but their lack of geometry constraints results in less accuracy. To overcome these limitations, we propose a novel camera pose refinement framework leveraging 3D Gaussian Splatting (3DGS), referred to as GS-SMC. Given the widespread usage of 3DGS, our method can employ an existing 3DGS model to render novel views, providing a lightweight solution that can be directly applied to diverse scenes without additional training or fine-tuning. Specifically, we introduce an iterative optimization approach, which refines the camera pose using epipolar geometric constraints among the query and multiple rendered images. Our method allows flexibly choosing feature extractors and matchers to establish these constraints. Extensive empirical evaluations on the 7-Scenes and the Cambridge Landmarks datasets demonstrate that our method outperforms state-of-the-art camera pose refinement approaches, achieving 53.3% and 56.9% reductions in median translation and rotation errors on 7-Scenes, and 40.7% and 53.2% on Cambridge.
Abstract:Multi-image super-resolution (MISR) can achieve higher image quality than single-image super-resolution (SISR) by aggregating sub-pixel information from multiple spatially shifted frames. Among MISR tasks, burst super-resolution (BurstSR) has gained significant attention due to its wide range of applications. Recent methods have increasingly adopted Transformers over convolutional neural networks (CNNs) in super-resolution tasks, due to their superior ability to capture both local and global context. However, most existing approaches still rely on fixed and narrow attention windows that restrict the perception of features beyond the local field. This limitation hampers alignment and feature aggregation, both of which are crucial for high-quality super-resolution. To address these limitations, we propose a novel feature extractor that incorporates two newly designed attention mechanisms: overlapping cross-window attention and cross-frame attention, enabling more precise and efficient extraction of sub-pixel information across multiple frames. Furthermore, we introduce a Multi-scan State-Space Module with the cross-frame attention mechanism to enhance feature aggregation. Extensive experiments on both synthetic and real-world benchmarks demonstrate the superiority of our approach. Additional evaluations on ISO 12233 resolution test charts further confirm its enhanced super-resolution performance.