Abstract:Accurate forecasting of the electrical load, such as the magnitude and the timing of peak power, is crucial to successful power system management and implementation of smart grid strategies like demand response and peak shaving. In multi-time-scale optimization scheduling, rolling optimization is a common solution. However, rolling optimization needs to consider the coupling of different optimization objectives across time scales. It is challenging to accurately capture the mid- and long-term dependencies in time series data. This paper proposes Multi-pofo, a multi-scale power load forecasting framework, that captures such dependency via a novel architecture equipped with a temporal positional encoding layer. To validate the effectiveness of the proposed model, we conduct experiments on real-world electricity load data. The experimental results show that our approach outperforms compared to several strong baseline methods.
Abstract:Heat, Ventilation and Air Conditioning (HVAC) systems play a critical role in maintaining a comfortable thermal environment and cost approximately 40% of primary energy usage in the building sector. For smart energy management in buildings, usage patterns and their resulting profiles allow the improvement of control systems with prediction capabilities. However, for large-scale HVAC system management, it is difficult to construct a detailed model for each subsystem. In this paper, a new data-driven room temperature prediction model is proposed based on the k-means clustering method. The proposed data-driven temperature prediction approach extracts the system operation feature through historical data analysis and further simplifies the system-level model to improve generalization and computational efficiency. We evaluate the proposed approach in the real world. The results demonstrated that our approach can significantly reduce modeling time without reducing prediction accuracy.