Abstract:Predicting the risk of developing breast cancer is an important clinical tool to guide early intervention and tailoring personalized screening strategies. Early risk models have limited performance and recently machine learning-based analysis of mammogram images showed encouraging risk prediction effects. These models however are limited to the use of a single exam or tend to overlook nuanced breast tissue evolvement in spatial and temporal details of longitudinal imaging exams that are indicative of breast cancer risk. In this paper, we propose STA-Risk (Spatial and Temporal Asymmetry-based Risk Prediction), a novel Transformer-based model that captures fine-grained mammographic imaging evolution simultaneously from bilateral and longitudinal asymmetries for breast cancer risk prediction. STA-Risk is innovative by the side encoding and temporal encoding to learn spatial-temporal asymmetries, regulated by a customized asymmetry loss. We performed extensive experiments with two independent mammogram datasets and achieved superior performance than four representative SOTA models for 1- to 5-year future risk prediction. Source codes will be released upon publishing of the paper.
Abstract:In breast cancer detection and diagnosis, the longitudinal analysis of mammogram images is crucial. Contemporary models excel in detecting temporal imaging feature changes, thus enhancing the learning process over sequential imaging exams. Yet, the resilience of these longitudinal models against adversarial attacks remains underexplored. In this study, we proposed a novel attack method that capitalizes on the feature-level relationship between two sequential mammogram exams of a longitudinal model, guided by both cross-entropy loss and distance metric learning, to achieve significant attack efficacy, as implemented using attack transferring in a black-box attacking manner. We performed experiments on a cohort of 590 breast cancer patients (each has two sequential mammogram exams) in a case-control setting. Results showed that our proposed method surpassed several state-of-the-art adversarial attacks in fooling the diagnosis models to give opposite outputs. Our method remained effective even if the model was trained with the common defending method of adversarial training.
Abstract:Curriculum learning is a learning method that trains models in a meaningful order from easier to harder samples. A key here is to devise automatic and objective difficulty measures of samples. In the medical domain, previous work applied domain knowledge from human experts to qualitatively assess classification difficulty of medical images to guide curriculum learning, which requires extra annotation efforts, relies on subjective human experience, and may introduce bias. In this work, we propose a new automated curriculum learning technique using the variance of gradients (VoG) to compute an objective difficulty measure of samples and evaluated its effects on elbow fracture classification from X-ray images. Specifically, we used VoG as a metric to rank each sample in terms of the classification difficulty, where high VoG scores indicate more difficult cases for classification, to guide the curriculum training process We compared the proposed technique to a baseline (without curriculum learning), a previous method that used human annotations on classification difficulty, and anti-curriculum learning. Our experiment results showed comparable and higher performance for the binary and multi-class bone fracture classification tasks.