Abstract:Gaussian-Process-based Bayesian optimization (GP-BO), is a prevailing model-based framework for DBMS auto-tuning. However, recent work shows GP-BO-based DBMS auto-tuners significantly outperformed auto-tuners based on SMAC, which features random forest surrogate models; such results motivate us to rethink and investigate the limitations of GP-BO in auto-tuner design. We find the fundamental assumptions of GP-BO are widely violated when modeling and optimizing DBMS performance, while tree-ensemble-BOs (e.g., SMAC) can avoid the assumption pitfalls and deliver improved tuning efficiency and effectiveness. Moreover, we argue that existing tree-ensemble-BOs restrict further advancement in DBMS auto-tuning. First, existing tree-ensemble-BOs can only achieve distribution-free point estimates, but still impose unrealistic distributional assumptions on uncertainty estimates, compromising surrogate modeling and distort the acquisition function. Second, recent advances in gradient boosting, which can further enhance surrogate modeling against vanilla GP and random forest counterparts, have rarely been applied in optimizing DBMS auto-tuners. To address these issues, we propose a novel model-based DBMS auto-tuner, Centrum. Centrum improves distribution-free point and interval estimation in surrogate modeling with a two-phase learning procedure of stochastic gradient boosting ensembles. Moreover, Centrum adopts a generalized SGBE-estimated locally-adaptive conformal prediction to facilitate a distribution-free uncertainty estimation and acquisition function. To our knowledge, Centrum is the first auto-tuner to realize distribution-freeness, enhancing BO's practicality in DBMS auto-tuning, and the first to seamlessly fuse gradient boosting ensembles and conformal inference in BO. Extensive physical and simulation experiments on two DBMSs and three workloads show Centrum outperforms 21 SOTA methods.




Abstract:MoE (Mixture of Experts) prevails as a neural architecture that can scale modern transformer-based LLMs (Large Language Models) to unprecedented scales. Nevertheless, large MoEs' great demands of computing power, memory capacity and memory bandwidth make scalable serving a fundamental challenge and efficient parallel inference has become a requisite to attain adequate throughput under latency constraints. DeepSpeed-MoE, one state-of-the-art MoE inference framework, adopts a 3D-parallel paradigm including EP (Expert Parallelism), TP (Tensor Parallel) and DP (Data Parallelism). However, our analysis shows DeepSpeed-MoE's inference efficiency is largely bottlenecked by EP, which is implemented with costly all-to-all collectives to route token activation. Our work aims to boost DeepSpeed-MoE by strategically reducing EP's communication overhead with a technique named Speculative MoE. Speculative MoE has two speculative parallelization schemes, speculative token shuffling and speculative expert grouping, which predict outstanding tokens' expert routing paths and pre-schedule tokens and experts across devices to losslessly trim EP's communication volume. Besides DeepSpeed-MoE, we also build Speculative MoE into a prevailing MoE inference engine SGLang. Experiments show Speculative MoE can significantly boost state-of-the-art MoE inference frameworks on fast homogeneous and slow heterogeneous interconnects.