Abstract:Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a powerful paradigm for post-training large reasoning models (LRMs) using policy-gradient methods such as GRPO. To stabilize training, these methods typically center trajectory rewards by subtracting the empirical mean for each prompt. Statistically, this centering acts as a control variate (or baseline), reducing the variance of the policy-gradient estimator. Typically, the mean reward is estimated using per-prompt empirical averages for each prompt in a batch. Drawing inspiration from Stein's paradox, we propose using shrinkage estimators that combine per-prompt and across-prompt means to improve the overall per-prompt mean estimation accuracy -- particularly in the low-generation regime typical of RLVR. Theoretically, we construct a shrinkage-based baseline that provably yields lower-variance policy-gradient estimators across algorithms. Our proposed baseline serves as a drop-in replacement for existing per-prompt mean baselines, requiring no additional hyper-parameters or computation. Empirically, shrinkage baselines consistently outperform standard empirical-mean baselines, leading to lower-variance gradient updates and improved training stability.




Abstract:Off-policy dynamic programming (DP) techniques such as $Q$-learning have proven to be an important technique for solving sequential decision-making problems. However, in the presence of function approximation such algorithms are not guaranteed to converge, often diverging due to the absence of Bellman-completeness in the function classes considered, a crucial condition for the success of DP-based methods. In this paper, we show how off-policy learning techniques based on return-conditioned supervised learning (RCSL) are able to circumvent these challenges of Bellman completeness, converging under significantly more relaxed assumptions inherited from supervised learning. We prove there exists a natural environment in which if one uses two-layer multilayer perceptron as the function approximator, the layer width needs to grow linearly with the state space size to satisfy Bellman-completeness while a constant layer width is enough for RCSL. These findings take a step towards explaining the superior empirical performance of RCSL methods compared to DP-based methods in environments with near-optimal datasets. Furthermore, in order to learn from sub-optimal datasets, we propose a simple framework called MBRCSL, granting RCSL methods the ability of dynamic programming to stitch together segments from distinct trajectories. MBRCSL leverages learned dynamics models and forward sampling to accomplish trajectory stitching while avoiding the need for Bellman completeness that plagues all dynamic programming algorithms. We propose both theoretical analysis and experimental evaluation to back these claims, outperforming state-of-the-art model-free and model-based offline RL algorithms across several simulated robotics problems.


Abstract:We introduce a class of networked Markov potential games where agents are associated with nodes in a network. Each agent has its own local potential function, and the reward of each agent depends only on the states and actions of agents within a $\kappa$-hop neighborhood. In this context, we propose a localized actor-critic algorithm. The algorithm is scalable since each agent uses only local information and does not need access to the global state. Further, the algorithm overcomes the curse of dimensionality through the use of function approximation. Our main results provide finite-sample guarantees up to a localization error and a function approximation error. Specifically, we achieve an $\tilde{\mathcal{O}}(\epsilon^{-4})$ sample complexity measured by the averaged Nash regret. This is the first finite-sample bound for multi-agent competitive games that does not depend on the number of agents.