Abstract:Swarm robotics navigating through unknown obstacle environments is an emerging research area that faces challenges. Performing tasks in such environments requires swarms to achieve autonomous localization, perception, decision-making, control, and planning. The limited computational resources of onboard platforms present significant challenges for planning and control. Reactive planners offer low computational demands and high re-planning frequencies but lack predictive capabilities, often resulting in local minima. Long-horizon planners, on the other hand, can perform multi-step predictions to reduce deadlocks but cost much computation, leading to lower re-planning frequencies. This paper proposes a real-time optimal virtual tube planning method for swarm robotics in unknown environments, which generates approximate solutions for optimal trajectories through affine functions. As a result, the computational complexity of approximate solutions is $O(n_t)$, where $n_t$ is the number of parameters in the trajectory, thereby significantly reducing the overall computational burden. By integrating reactive methods, the proposed method enables low-computation, safe swarm motion in unknown environments. The effectiveness of the proposed method is validated through several simulations and experiments.