Abstract:Cross-modal localization using text and point clouds enables robots to localize themselves via natural language descriptions, with applications in autonomous navigation and interaction between humans and robots. In this task, objects often recur across text and point clouds, making spatial relationships the most discriminative cues for localization. Given this characteristic, we present SpatiaLoc, a framework utilizing a coarse-to-fine strategy that emphasizes spatial relationships at both the instance and global levels. In the coarse stage, we introduce a Bezier Enhanced Object Spatial Encoder (BEOSE) that models spatial relationships at the instance level using quadratic Bezier curves. Additionally, a Frequency Aware Encoder (FAE) generates spatial representations in the frequency domain at the global level. In the fine stage, an Uncertainty Aware Gaussian Fine Localizer (UGFL) regresses 2D positions by modeling predictions as Gaussian distributions with a loss function aware of uncertainty. Extensive experiments on KITTI360Pose demonstrate that SpatiaLoc significantly outperforms existing state-of-the-art (SOTA) methods.
Abstract:Place recognition is a cornerstone of vehicle navigation and mapping, which is pivotal in enabling systems to determine whether a location has been previously visited. This capability is critical for tasks such as loop closure in Simultaneous Localization and Mapping (SLAM) and long-term navigation under varying environmental conditions. In this survey, we comprehensively review recent advancements in place recognition, emphasizing three representative methodological paradigms: Convolutional Neural Network (CNN)-based approaches, Transformer-based frameworks, and cross-modal strategies. We begin by elucidating the significance of place recognition within the broader context of autonomous systems. Subsequently, we trace the evolution of CNN-based methods, highlighting their contributions to robust visual descriptor learning and scalability in large-scale environments. We then examine the emerging class of Transformer-based models, which leverage self-attention mechanisms to capture global dependencies and offer improved generalization across diverse scenes. Furthermore, we discuss cross-modal approaches that integrate heterogeneous data sources such as Lidar, vision, and text description, thereby enhancing resilience to viewpoint, illumination, and seasonal variations. We also summarize standard datasets and evaluation metrics widely adopted in the literature. Finally, we identify current research challenges and outline prospective directions, including domain adaptation, real-time performance, and lifelong learning, to inspire future advancements in this domain. The unified framework of leading-edge place recognition methods, i.e., code library, and the results of their experimental evaluations are available at https://github.com/CV4RA/SOTA-Place-Recognitioner.