Abstract:With the development of embodied artificial intelligence, robotic research has increasingly focused on complex tasks. Existing simulation platforms, however, are often limited to idealized environments, simple task scenarios and lack data interoperability. This restricts task decomposition and multi-task learning. Additionally, current simulation platforms face challenges in dynamic pedestrian modeling, scene editability, and synchronization between virtual and real assets. These limitations hinder real world robot deployment and feedback. To address these challenges, we propose DVS (Dynamic Virtual-Real Simulation Platform), a platform for dynamic virtual-real synchronization in mobile robotic tasks. DVS integrates a random pedestrian behavior modeling plugin and large-scale, customizable indoor scenes for generating annotated training datasets. It features an optical motion capture system, synchronizing object poses and coordinates between virtual and real world to support dynamic task benchmarking. Experimental validation shows that DVS supports tasks such as pedestrian trajectory prediction, robot path planning, and robotic arm grasping, with potential for both simulation and real world deployment. In this way, DVS represents more than just a versatile robotic platform; it paves the way for research in human intervention in robot execution tasks and real-time feedback algorithms in virtual-real fusion environments. More information about the simulation platform is available on https://immvlab.github.io/DVS/.
Abstract:Most existing mobile robotic datasets primarily capture static scenes, limiting their utility for evaluating robotic performance in dynamic environments. To address this, we present a mobile robot oriented large-scale indoor dataset, denoted as THUD++ (TsingHua University Dynamic) robotic dataset, for dynamic scene understanding. Our current dataset includes 13 large-scale dynamic scenarios, combining both real-world and synthetic data collected with a real robot platform and a physical simulation platform, respectively. The RGB-D dataset comprises over 90K image frames, 20M 2D/3D bounding boxes of static and dynamic objects, camera poses, and IMU. The trajectory dataset covers over 6,000 pedestrian trajectories in indoor scenes. Additionally, the dataset is augmented with a Unity3D-based simulation platform, allowing researchers to create custom scenes and test algorithms in a controlled environment. We evaluate state-of-the-art methods on THUD++ across mainstream indoor scene understanding tasks, e.g., 3D object detection, semantic segmentation, relocalization, pedestrian trajectory prediction, and navigation. Our experiments highlight the challenges mobile robots encounter in indoor environments, especially when navigating in complex, crowded, and dynamic scenes. By sharing this dataset, we aim to accelerate the development and testing of mobile robot algorithms, contributing to real-world robotic applications.