Abstract:PID controllers are widely used in control systems because of their simplicity and effectiveness. Although advanced optimization techniques such as Bayesian Optimization and Differential Evolution have been applied to address the challenges of automatic tuning of PID controllers, the influence of initial system states on convergence and the balance between exploration and exploitation remains underexplored. Moreover, experimenting the influence directly on real cyber-physical systems such as mobile robots is crucial for deriving realistic insights. In the present paper, a novel framework is introduced to evaluate the impact of systematically varying these factors on the PID auto-tuning processes that utilize Bayesian Optimization and Differential Evolution. Testing was conducted on two distinct PID-controlled robotic platforms, an omnidirectional robot and a differential drive mobile robot, to assess the effects on convergence rate, settling time, rise time, and overshoot percentage. As a result, the experimental outcomes yield evidence on the effects of the systematic variations, thereby providing an empirical basis for future research studies in the field.
Abstract:Accurate prediction of FIFA World Cup match outcomes holds significant value for analysts, coaches, bettors, and fans. This paper presents a machine learning framework specifically designed to forecast match winners in FIFA World Cup. By integrating both team-level historical data and player-specific performance metrics such as goals, assists, passing accuracy, and tackles, we capture nuanced interactions often overlooked by traditional aggregate models. Our methodology processes multi-year data to create year-specific team profiles that account for evolving rosters and player development. We employ classification techniques complemented by dimensionality reduction and hyperparameter optimization, to yield robust predictive models. Experimental results on data from the FIFA 2022 World Cup demonstrate our approach's superior accuracy compared to baseline method. Our findings highlight the importance of incorporating individual player attributes and team-level composition to enhance predictive performance, offering new insights into player synergy, strategic match-ups, and tournament progression scenarios. This work underscores the transformative potential of rich, player-centric data in sports analytics, setting a foundation for future exploration of advanced learning architectures such as graph neural networks to model complex team interactions.