Abstract:Accurate prediction of FIFA World Cup match outcomes holds significant value for analysts, coaches, bettors, and fans. This paper presents a machine learning framework specifically designed to forecast match winners in FIFA World Cup. By integrating both team-level historical data and player-specific performance metrics such as goals, assists, passing accuracy, and tackles, we capture nuanced interactions often overlooked by traditional aggregate models. Our methodology processes multi-year data to create year-specific team profiles that account for evolving rosters and player development. We employ classification techniques complemented by dimensionality reduction and hyperparameter optimization, to yield robust predictive models. Experimental results on data from the FIFA 2022 World Cup demonstrate our approach's superior accuracy compared to baseline method. Our findings highlight the importance of incorporating individual player attributes and team-level composition to enhance predictive performance, offering new insights into player synergy, strategic match-ups, and tournament progression scenarios. This work underscores the transformative potential of rich, player-centric data in sports analytics, setting a foundation for future exploration of advanced learning architectures such as graph neural networks to model complex team interactions.
Abstract:Validating autonomous driving neural networks often demands expensive equipment and complex setups, limiting accessibility for researchers and educators. We introduce DriveNetBench, an affordable and configurable benchmarking system designed to evaluate autonomous driving networks using a single-camera setup. Leveraging low-cost, off-the-shelf hardware, and a flexible software stack, DriveNetBench enables easy integration of various driving models, such as object detection and lane following, while ensuring standardized evaluation in real-world scenarios. Our system replicates common driving conditions and provides consistent, repeatable metrics for comparing network performance. Through preliminary experiments with representative vision models, we illustrate how DriveNetBench effectively measures inference speed and accuracy within a controlled test environment. The key contributions of this work include its affordability, its replicability through open-source software, and its seamless integration into existing workflows, making autonomous vehicle research more accessible.