Abstract:Embedding methods have become popular due to their scalability on link prediction and/or triple classification tasks on Knowledge Graphs. Embedding models are trained relying on both positive and negative samples of triples. However, in the absence of negative assertions, these must be usually artificially generated using various negative sampling strategies, ranging from random corruption to more sophisticated techniques which have an impact on the overall performance. Most of the popular libraries for knowledge graph embedding, support only basic such strategies and lack advanced solutions. To address this gap, we deliver an extension for the popular KGE framework PyKEEN that integrates a suite of several advanced negative samplers (including both static and dynamic corruption strategies), within a consistent modular architecture, to generate meaningful negative samples, while remaining compatible with existing PyKEEN -based workflows and pipelines. The developed extension not only enhancesPyKEEN itself but also allows for easier and comprehensive development of embedding methods and/or for their customization. As a proof of concept, we present a comprehensive empirical study of the developed extensions and their impact on the performance (link prediction tasks) of different embedding methods, which also provides useful insights for the design of more effective strategies
Abstract:The International Semantic Web Research School (ISWS) is a week-long intensive program designed to immerse participants in the field. This document reports a collaborative effort performed by ten teams of students, each guided by a senior researcher as their mentor, attending ISWS 2023. Each team provided a different perspective to the topic of creative AI, substantiated by a set of research questions as the main subject of their investigation. The 2023 edition of ISWS focuses on the intersection of Semantic Web technologies and Creative AI. ISWS 2023 explored various intersections between Semantic Web technologies and creative AI. A key area of focus was the potential of LLMs as support tools for knowledge engineering. Participants also delved into the multifaceted applications of LLMs, including legal aspects of creative content production, humans in the loop, decentralised approaches to multimodal generative AI models, nanopublications and AI for personal scientific knowledge graphs, commonsense knowledge in automatic story and narrative completion, generative AI for art critique, prompt engineering, automatic music composition, commonsense prototyping and conceptual blending, and elicitation of tacit knowledge. As Large Language Models and semantic technologies continue to evolve, new exciting prospects are emerging: a future where the boundaries between creative expression and factual knowledge become increasingly permeable and porous, leading to a world of knowledge that is both informative and inspiring.