Abstract:This paper proposes a novel formation maneuver control method for both 2-D and 3-D space, which enables the formation to translate, scale, and rotate with arbitrary orientation. The core innovation is the novel design of weights in the proposed augmented Laplacian matrix. Instead of using scalars, we represent weights as matrices, which are designed based on a specified rotation axis and allow the formation to perform rotation in 3-D space. To further improve the flexibility and scalability of the formation, the rotational axis adjustment approach and dynamic agent reconfiguration method are developed, allowing formations to rotate around arbitrary axes in 3-D space and new agents to join the formation. Theoretical analysis is provided to show that the proposed approach preserves the original configuration of the formation. The proposed method maintains the advantages of the complex Laplacian-based method, including reduced neighbor requirements and no reliance on generic or convex nominal configurations, while achieving arbitrary orientation rotations via a more simplified implementation. Simulations in both 2-D and 3-D space validate the effectiveness of the proposed method.