Abstract:Modern surveillance systems increasingly rely on multi-wavelength sensors and deep neural networks to recognize faces in infrared images captured at night. However, most facial recognition models are trained on visible light datasets, leading to substantial performance degradation on infrared inputs due to significant domain shifts. Early feature-based methods for infrared face recognition proved ineffective, prompting researchers to adopt generative approaches that convert infrared images into visible light images for improved recognition. This paradigm, known as Heterogeneous Face Recognition (HFR), faces challenges such as model and modality discrepancies, leading to distortion and feature loss in generated images. To address these limitations, this paper introduces a novel latent diffusion-based model designed to generate high-quality visible face images from thermal inputs while preserving critical identity features. A multi-attribute classifier is incorporated to extract key facial attributes from visible images, mitigating feature loss during infrared-to-visible image restoration. Additionally, we propose the Self-attn Mamba module, which enhances global modeling of cross-modal features and significantly improves inference speed. Experimental results on two benchmark datasets demonstrate the superiority of our approach, achieving state-of-the-art performance in both image quality and identity preservation.
Abstract:Large-scale text-to-image diffusion models have achieved unprecedented success in image generation and editing. However, extending this success to video editing remains challenging. Recent video editing efforts have adapted pretrained text-to-image models by adding temporal attention mechanisms to handle video tasks. Unfortunately, these methods continue to suffer from temporal inconsistency issues and high computational overheads. In this study, we propose FluencyVE, which is a simple yet effective one-shot video editing approach. FluencyVE integrates the linear time-series module, Mamba, into a video editing model based on pretrained Stable Diffusion models, replacing the temporal attention layer. This enables global frame-level attention while reducing the computational costs. In addition, we employ low-rank approximation matrices to replace the query and key weight matrices in the causal attention, and use a weighted averaging technique during training to update the attention scores. This approach significantly preserves the generative power of the text-to-image model while effectively reducing the computational burden. Experiments and analyses demonstrate promising results in editing various attributes, subjects, and locations in real-world videos.
Abstract:Dual-camera super-resolution is highly practical for smartphone photography that primarily super-resolve the wide-angle images using the telephoto image as a reference. In this paper, we propose DM$^3$Net, a novel dual-camera super-resolution network based on Domain Modulation and Multi-scale Matching. To bridge the domain gap between the high-resolution domain and the degraded domain, we learn two compressed global representations from image pairs corresponding to the two domains. To enable reliable transfer of high-frequency structural details from the reference image, we design a multi-scale matching module that conducts patch-level feature matching and retrieval across multiple receptive fields to improve matching accuracy and robustness. Moreover, we also introduce Key Pruning to achieve a significant reduction in memory usage and inference time with little model performance sacrificed. Experimental results on three real-world datasets demonstrate that our DM$^3$Net outperforms the state-of-the-art approaches.