Abstract:The INTERSPEECH 2025 Challenge on Multilingual Conversational Speech Language Models (MLC-SLM) promotes multilingual conversational ASR with large language models (LLMs). Our previous SHNU-mASR system adopted a competitive parallel-speech-encoder architecture that integrated Whisper and mHuBERT with an LLM. However, it faced two challenges: simple feature concatenation may not fully exploit complementary information, and the performance gap between LLM-based ASR and end-to-end(E2E) encoder-decoder ASR remained unexplored. In this work, we present an enhanced LLM-based ASR framework that combines fine-tuned Whisper and mHuBERT encoders with an LLM to enrich speech representations. We first evaluate E2E Whisper models with LoRA and full fine-tuning on the MLC-SLM ASR task, and then propose cross-attention-based fusion mechanisms for the parallel-speech-encoder. On the official evaluation set of the MLC-SLM Challenge, our system achieves a CER/WER of 10.69%, ranking on par with the top-ranked Track 1 systems, even though it uses only 1,500 hours of baseline training data compared with their large-scale training sets. Nonetheless, we find that our final LLM-based ASR still does not match the performance of a fine-tuned E2E Whisper model, providing valuable empirical guidance for future Speech-LLM design. Our code is publicly available at https://github.com/1535176727/MLC-SLM.
Abstract:Large-scale multilingual ASR (mASR) models such as Whisper achieve strong performance but incur high computational and latency costs, limiting their deployment on resource-constrained edge devices. In this study, we propose a lightweight and language-agnostic multilingual ASR system based on a CTC architecture with domain adaptation. Specifically, we introduce a Language-agnostic Hierarchical LoRA-MoE (HLoRA) framework integrated into an mHuBERT-CTC model, enabling end-to-end decoding via LID-posterior-driven LoRA routing. The hierarchical design consists of a multilingual shared LoRA for learning language-invariant acoustic representations and language-specific LoRA experts for modeling language-dependent characteristics. The proposed routing mechanism removes the need for prior language identity information or explicit language labels during inference, achieving true language-agnostic decoding. Experiments on MSR-86K and the MLC-SLM 2025 Challenge datasets demonstrate that HLoRA achieves competitive performance with state-of-the-art two-stage inference methods using only single-pass decoding, significantly improving decoding efficiency for low-resource mASR applications.