Abstract:Model routing allocates queries to the suitable model, improving system performance while reducing costs. However, existing routing methods face practical limitations that hinder scalability in large-scale applications and struggle to keep up with the rapid growth of the large language model (LLM) ecosystem. To tackle these challenges, we propose TagRouter, a training-free model routing method designed to optimize the synergy among multiple LLMs for open-domain text generation tasks. Experimental results demonstrate that TagRouter outperforms 13 baseline methods, increasing the accept rate of system by 6.15% and reducing costs by 17.20%, achieving optimal cost-efficiency. Our findings provides the LLM community with an efficient and scalable solution for model ensembling, offering users an evolvable "super model."
Abstract:Off-Policy Evaluation (OPE) is employed to assess the potential impact of a hypothetical policy using logged contextual bandit feedback, which is crucial in areas such as personalized medicine and recommender systems, where online interactions are associated with significant risks and costs. Traditionally, OPE methods rely on the Stable Unit Treatment Value Assumption (SUTVA), which assumes that the reward for any given individual is unaffected by the actions of others. However, this assumption often fails in real-world scenarios due to the presence of interference, where an individual's reward is affected not just by their own actions but also by the actions of their peers. This realization reveals significant limitations of existing OPE methods in real-world applications. To address this limitation, we propose IntIPW, an IPW-style estimator that extends the Inverse Probability Weighting (IPW) framework by integrating marginalized importance weights to account for both individual actions and the influence of adjacent entities. Extensive experiments are conducted on both synthetic and real-world data to demonstrate the effectiveness of the proposed IntIPW method.