Abstract:This paper proposes a high-quality dataset construction method for complex contract information extraction tasks in industrial scenarios and fine-tunes a large language model based on this dataset. Firstly, cluster analysis is performed on industrial contract texts, and GPT-4 and GPT-3.5 are used to extract key information from the original contract data, obtaining high-quality data annotations. Secondly, data augmentation is achieved by constructing new texts, and GPT-3.5 generates unstructured contract texts from randomly combined keywords, improving model robustness. Finally, the large language model is fine-tuned based on the high-quality dataset. Experimental results show that the model achieves excellent overall performance while ensuring high field recall and precision and considering parsing efficiency. LoRA, data balancing, and data augmentation effectively enhance model accuracy and robustness. The proposed method provides a novel and efficient solution for industrial contract information extraction tasks.
Abstract:Temporal Point Processes (TPPs) are widely used for modeling event sequences in various medical domains, such as disease onset prediction, progression analysis, and clinical decision support. Although TPPs effectively capture temporal dynamics, their lack of interpretability remains a critical challenge. Recent advancements have introduced interpretable TPPs. However, these methods fail to incorporate numerical features, thereby limiting their ability to generate precise predictions. To address this issue, we propose Hybrid-Rule Temporal Point Processes (HRTPP), a novel framework that integrates temporal logic rules with numerical features, improving both interpretability and predictive accuracy in event modeling. HRTPP comprises three key components: basic intensity for intrinsic event likelihood, rule-based intensity for structured temporal dependencies, and numerical feature intensity for dynamic probability modulation. To effectively discover valid rules, we introduce a two-phase rule mining strategy with Bayesian optimization. To evaluate our method, we establish a multi-criteria assessment framework, incorporating rule validity, model fitting, and temporal predictive accuracy. Experimental results on real-world medical datasets demonstrate that HRTPP outperforms state-of-the-art interpretable TPPs in terms of predictive performance and clinical interpretability. In case studies, the rules extracted by HRTPP explain the disease progression, offering valuable contributions to medical diagnosis.