Abstract:Automating small-scale experiments in materials science presents challenges due to the heterogeneous nature of experimental setups. This study introduces the SCU-Hand (Soft Conical Universal Robot Hand), a novel end-effector designed to automate the task of scooping powdered samples from various container sizes using a robotic arm. The SCU-Hand employs a flexible, conical structure that adapts to different container geometries through deformation, maintaining consistent contact without complex force sensing or machine learning-based control methods. Its reconfigurable mechanism allows for size adjustment, enabling efficient scooping from diverse container types. By combining soft robotics principles with a sheet-morphing design, our end-effector achieves high flexibility while retaining the necessary stiffness for effective powder manipulation. We detail the design principles, fabrication process, and experimental validation of the SCU-Hand. Experimental validation showed that the scooping capacity is about 20% higher than that of a commercial tool, with a scooping performance of more than 95% for containers of sizes between 67 mm to 110 mm. This research contributes to laboratory automation by offering a cost-effective, easily implementable solution for automating tasks such as materials synthesis and characterization processes.
Abstract:Our team Hibikino-Musashi@Home was founded in 2010. It is based in Kitakyushu Science and Research Park, Japan. Since 2010, we have participated in the RoboCup@Home Japan open competition open-platform league every year. Currently, the Hibikino-Musashi@Home team has 24 members from seven different laboratories based in the Kyushu Institute of Technology. Our home-service robots are used as platforms for both education and implementation of our research outcomes. In this paper, we introduce our team and the technologies that we have implemented in our robots.