Abstract:We propose $S^3$LAM, a novel RGB-D SLAM system that leverages 2D surfel splatting to achieve highly accurate geometric representations for simultaneous tracking and mapping. Unlike existing 3DGS-based SLAM approaches that rely on 3D Gaussian ellipsoids, we utilize 2D Gaussian surfels as primitives for more efficient scene representation. By focusing on the surfaces of objects in the scene, this design enables $S^3$LAM to reconstruct high-quality geometry, benefiting both mapping and tracking. To address inherent SLAM challenges including real-time optimization under limited viewpoints, we introduce a novel adaptive surface rendering strategy that improves mapping accuracy while maintaining computational efficiency. We further derive camera pose Jacobians directly from 2D surfel splatting formulation, highlighting the importance of our geometrically accurate representation that improves tracking convergence. Extensive experiments on both synthetic and real-world datasets validate that $S^3$LAM achieves state-of-the-art performance. Code will be made publicly available.
Abstract:Tooth arrangement is a crucial step in orthodontics treatment, in which aligning teeth could improve overall well-being, enhance facial aesthetics, and boost self-confidence. To improve the efficiency of tooth arrangement and minimize errors associated with unreasonable designs by inexperienced practitioners, some deep learning-based tooth arrangement methods have been proposed. Currently, most existing approaches employ MLPs to model the nonlinear relationship between tooth features and transformation matrices to achieve tooth arrangement automatically. However, the limited datasets (which to our knowledge, have not been made public) collected from clinical practice constrain the applicability of existing methods, making them inadequate for addressing diverse malocclusion issues. To address this challenge, we propose a general tooth arrangement neural network based on the diffusion probabilistic model. Conditioned on the features extracted from the dental model, the diffusion probabilistic model can learn the distribution of teeth transformation matrices from malocclusion to normal occlusion by gradually denoising from a random variable, thus more adeptly managing real orthodontic data. To take full advantage of effective features, we exploit both mesh and point cloud representations by designing different encoding networks to extract the tooth (local) and jaw (global) features, respectively. In addition to traditional metrics ADD, PA-ADD, CSA, and ME_{rot}, we propose a new evaluation metric based on dental arch curves to judge whether the generated teeth meet the individual normal occlusion. Experimental results demonstrate that our proposed method achieves state-of-the-art tooth alignment results and satisfactory occlusal relationships between dental arches. We will publish the code and dataset.