Abstract:This paper presents MonoRelief V2, an end-to-end model designed for directly recovering 2.5D reliefs from single images under complex material and illumination variations. In contrast to its predecessor, MonoRelief V1 [1], which was solely trained on synthetic data, MonoRelief V2 incorporates real data to achieve improved robustness, accuracy and efficiency. To overcome the challenge of acquiring large-scale real-world dataset, we generate approximately 15,000 pseudo real images using a text-to-image generative model, and derive corresponding depth pseudo-labels through fusion of depth and normal predictions. Furthermore, we construct a small-scale real-world dataset (800 samples) via multi-view reconstruction and detail refinement. MonoRelief V2 is then progressively trained on the pseudo-real and real-world datasets. Comprehensive experiments demonstrate its state-of-the-art performance both in depth and normal predictions, highlighting its strong potential for a range of downstream applications. Code is at: https://github.com/glp1001/MonoreliefV2.
Abstract:In this paper, we propose a technique for making humans in photographs protrude like reliefs. Unlike previous methods which mostly focus on the face and head, our method aims to generate art works that describe the whole body activity of the character. One challenge is that there is no ground-truth for supervised deep learning. We introduce a sigmoid variant function to manipulate gradients tactfully and train our neural networks by equipping with a loss function defined in gradient domain. The second challenge is that actual photographs often across different light conditions. We used image-based rendering technique to address this challenge and acquire rendering images and depth data under different lighting conditions. To make a clear division of labor in network modules, a two-scale architecture is proposed to create high-quality relief from a single photograph. Extensive experimental results on a variety of scenes show that our method is a highly effective solution for generating digital 2.5D artwork from photographs.