Abstract:The financial market is known to be highly sensitive to news. Therefore, effectively incorporating news data into quantitative trading remains an important challenge. Existing approaches typically rely on manually designed rules and/or handcrafted features. In this work, we directly use the news sentiment scores derived from large language models, together with raw price and volume data, as observable inputs for reinforcement learning. These inputs are processed by sequence models such as recurrent neural networks or Transformers to make end-to-end trading decisions. We conduct experiments using the cryptocurrency market as an example and evaluate two representative reinforcement learning algorithms, namely Double Deep Q-Network (DDQN) and Group Relative Policy Optimization (GRPO). The results demonstrate that our news-aware approach, which does not depend on handcrafted features or manually designed rules, can achieve performance superior to market benchmarks. We further highlight the critical role of time-series information in this process.




Abstract:Material responses to static and dynamic stimuli, represented as nonlinear curves, are design targets for engineering functionalities like structural support, impact protection, and acoustic and photonic bandgaps. Three-dimensional metamaterials offer significant tunability due to their internal structure, yet existing methods struggle to capture their complex behavior-to-structure relationships. We present GraphMetaMat, a graph-based framework capable of designing three-dimensional metamaterials with programmable responses and arbitrary manufacturing constraints. Integrating graph networks, physics biases, reinforcement learning, and tree search, GraphMetaMat can target stress-strain curves spanning four orders of magnitude and complex behaviors, as well as viscoelastic transmission responses with varying attenuation gaps. GraphMetaMat can create cushioning materials for protective equipment and vibration-damping panels for electric vehicles, outperforming commercial materials, and enabling the automatic design of materials with on-demand functionalities.