Abstract:Single Image Reflection Separation (SIRS) disentangles mixed images into transmission and reflection layers. Existing methods suffer from transmission-reflection confusion under nonlinear mixing, particularly in deep decoder layers, due to implicit fusion mechanisms and inadequate multi-scale coordination. We propose ReflexSplit, a dual-stream framework with three key innovations. (1) Cross-scale Gated Fusion (CrGF) adaptively aggregates semantic priors, texture details, and decoder context across hierarchical depths, stabilizing gradient flow and maintaining feature consistency. (2) Layer Fusion-Separation Blocks (LFSB) alternate between fusion for shared structure extraction and differential separation for layer-specific disentanglement. Inspired by Differential Transformer, we extend attention cancellation to dual-stream separation via cross-stream subtraction. (3) Curriculum training progressively strengthens differential separation through depth-dependent initialization and epoch-wise warmup. Extensive experiments on synthetic and real-world benchmarks demonstrate state-of-the-art performance with superior perceptual quality and robust generalization. Our code is available at https://github.com/wuw2135/ReflexSplit.
Abstract:Shadow removal under diverse lighting conditions requires disentangling illumination from intrinsic reflectance, a challenge compounded when physical priors are not properly aligned. We propose PhaSR (Physically Aligned Shadow Removal), addressing this through dual-level prior alignment to enable robust performance from single-light shadows to multi-source ambient lighting. First, Physically Aligned Normalization (PAN) performs closed-form illumination correction via Gray-world normalization, log-domain Retinex decomposition, and dynamic range recombination, suppressing chromatic bias. Second, Geometric-Semantic Rectification Attention (GSRA) extends differential attention to cross-modal alignment, harmonizing depth-derived geometry with DINO-v2 semantic embeddings to resolve modal conflicts under varying illumination. Experiments show competitive performance in shadow removal with lower complexity and generalization to ambient lighting where traditional methods fail under multi-source illumination. Our source code is available at https://github.com/ming053l/PhaSR.
Abstract:This report presents our semantic segmentation framework developed by team ACVLAB for the ICRA 2025 GOOSE 2D Semantic Segmentation Challenge, which focuses on parsing outdoor scenes into nine semantic categories under real-world conditions. Our method integrates a Swin Transformer backbone enhanced with Rotary Position Embedding (RoPE) for improved spatial generalization, alongside a Color Shift Estimation-and-Correction module designed to compensate for illumination inconsistencies in natural environments. To further improve training stability, we adopt a quantile-based denoising strategy that downweights the top 2.5\% of highest-error pixels, treating them as noise and suppressing their influence during optimization. Evaluated on the official GOOSE test set, our approach achieved a mean Intersection over Union (mIoU) of 0.848, demonstrating the effectiveness of combining color correction, positional encoding, and error-aware denoising in robust semantic segmentation.