Abstract:Reflective documents often suffer from specular highlights under ambient lighting, severely hindering text readability and degrading overall visual quality. Although recent deep learning methods show promise in highlight removal, they remain suboptimal for document images, primarily due to the lack of dedicated datasets and tailored architectural designs. To tackle these challenges, we present DocHR14K, a large-scale real-world dataset comprising 14,902 high-resolution image pairs across six document categories and various lighting conditions. To the best of our knowledge, this is the first high-resolution dataset for document highlight removal that captures a wide range of real-world lighting conditions. Additionally, motivated by the observation that the residual map between highlighted and clean images naturally reveals the spatial structure of highlight regions, we propose a simple yet effective Highlight Location Prior (HLP) to estimate highlight masks without human annotations. Building on this prior, we present the Location-Aware Laplacian Pyramid Highlight Removal Network (L2HRNet), which effectively removes highlights by leveraging estimated priors and incorporates diffusion module to restore details. Extensive experiments demonstrate that DocHR14K improves highlight removal under diverse lighting conditions. Our L2HRNet achieves state-of-the-art performance across three benchmark datasets, including a 5.01\% increase in PSNR and a 13.17\% reduction in RMSE on DocHR14K.
Abstract:Sequential recommendation (SR) systems predict user preferences by analyzing time-ordered interaction sequences. A common challenge for SR is data sparsity, as users typically interact with only a limited number of items. While contrastive learning has been employed in previous approaches to address the challenges, these methods often adopt binary labels, missing finer patterns and overlooking detailed information in subsequent behaviors of users. Additionally, they rely on random sampling to select negatives in contrastive learning, which may not yield sufficiently hard negatives during later training stages. In this paper, we propose Future data utilization with Enduring Negatives for contrastive learning in sequential Recommendation (FENRec). Our approach aims to leverage future data with time-dependent soft labels and generate enduring hard negatives from existing data, thereby enhancing the effectiveness in tackling data sparsity. Experiment results demonstrate our state-of-the-art performance across four benchmark datasets, with an average improvement of 6.16\% across all metrics.