Abstract:Multi-vector embedding models have emerged as a powerful paradigm for document retrieval, preserving fine-grained visual and textual details through token-level representations. However, this expressiveness comes at a staggering cost: storing embeddings for every token inflates index sizes by over $1000\times$ compared to single-vector approaches, severely limiting scalability. We introduce \textbf{ReinPool}, a reinforcement learning framework that learns to dynamically filter and pool multi-vector embeddings into compact, retrieval-optimized representations. By training with an inverse retrieval objective and NDCG-based rewards, ReinPool identifies and retains only the most discriminative vectors without requiring manual importance annotations. On the Vidore V2 benchmark across three vision-language embedding models, ReinPool compresses multi-vector representations by $746$--$1249\times$ into single vectors while recovering 76--81\% of full multi-vector retrieval performance. Compared to static mean pooling baselines, ReinPool achieves 22--33\% absolute NDCG@3 improvement, demonstrating that learned selection significantly outperforms heuristic aggregation.
Abstract:The emergence of open-source large language models (LLMs) has expanded opportunities for enterprise applications; however, many organizations still lack the infrastructure to deploy and maintain large-scale models. As a result, small LLMs (sLLMs) have become a practical alternative, despite their inherent performance limitations. While Domain Adaptive Continual Pretraining (DACP) has been previously explored as a method for domain adaptation, its utility in commercial applications remains under-examined. In this study, we validate the effectiveness of applying a DACP-based recipe across diverse foundation models and service domains. Through extensive experiments and real-world evaluations, we demonstrate that DACP-applied sLLMs achieve substantial gains in target domain performance while preserving general capabilities, offering a cost-efficient and scalable solution for enterprise-level deployment.