Abstract:The emergence of open-source large language models (LLMs) has expanded opportunities for enterprise applications; however, many organizations still lack the infrastructure to deploy and maintain large-scale models. As a result, small LLMs (sLLMs) have become a practical alternative, despite their inherent performance limitations. While Domain Adaptive Continual Pretraining (DACP) has been previously explored as a method for domain adaptation, its utility in commercial applications remains under-examined. In this study, we validate the effectiveness of applying a DACP-based recipe across diverse foundation models and service domains. Through extensive experiments and real-world evaluations, we demonstrate that DACP-applied sLLMs achieve substantial gains in target domain performance while preserving general capabilities, offering a cost-efficient and scalable solution for enterprise-level deployment.
Abstract:Recently, along with interest in autonomous vehicles, the importance of monitoring systems for both drivers and passengers inside vehicles has been increasing. This paper proposes a novel in-vehicle monitoring system the combines 3D pose estimation, seat-belt segmentation, and seat-belt status classification networks. Our system outputs various information necessary for monitoring by accurately considering the data characteristics of the in-vehicle environment. Specifically, the proposed 3D pose estimation directly estimates the absolute coordinates of keypoints for a driver and passengers, and the proposed seat-belt segmentation is implemented by applying a structure based on the feature pyramid. In addition, we propose a classification task to distinguish between normal and abnormal states of wearing a seat belt using results that combine 3D pose estimation with seat-belt segmentation. These tasks can be learned simultaneously and operate in real-time. Our method was evaluated on a private dataset we newly created and annotated. The experimental results show that our method has significantly high performance that can be applied directly to real in-vehicle monitoring systems.