Abstract:3D Gaussian Splatting (3DGS) has demonstrated impressive capabilities in novel view synthesis. However, rendering reflective objects remains a significant challenge, particularly in inverse rendering and relighting. We introduce RTR-GS, a novel inverse rendering framework capable of robustly rendering objects with arbitrary reflectance properties, decomposing BRDF and lighting, and delivering credible relighting results. Given a collection of multi-view images, our method effectively recovers geometric structure through a hybrid rendering model that combines forward rendering for radiance transfer with deferred rendering for reflections. This approach successfully separates high-frequency and low-frequency appearances, mitigating floating artifacts caused by spherical harmonic overfitting when handling high-frequency details. We further refine BRDF and lighting decomposition using an additional physically-based deferred rendering branch. Experimental results show that our method enhances novel view synthesis, normal estimation, decomposition, and relighting while maintaining efficient training inference process.
Abstract:The neural radiance field (NeRF) has emerged as a prominent methodology for synthesizing realistic images of novel views. While neural radiance representations based on voxels or mesh individually offer distinct advantages, excelling in either rendering quality or speed, each has limitations in the other aspect. In response, we propose a pioneering hybrid representation named Vosh, seamlessly combining both voxel and mesh components in hybrid rendering for view synthesis. Vosh is meticulously crafted by optimizing the voxel grid of NeRF, strategically with selected voxels replaced by mesh. Therefore, it excels in fast rendering scenes with simple geometry and textures through its mesh component, while simultaneously enabling high-quality rendering in intricate regions by leveraging voxel component. The flexibility of Vosh is showcased through the ability to adjust hybrid ratios, providing users the ability to control the balance between rendering quality and speed based on flexible usage. Experimental results demonstrates that our method achieves commendable trade-off between rendering quality and speed, and notably has real-time performance on mobile devices.