Abstract:A long-standing challenge in tomography is the 'missing wedge' problem, which arises when the acquisition of projection images within a certain angular range is restricted due to geometrical constraints. This incomplete dataset results in significant artifacts and poor resolution in the reconstructed image. To tackle this challenge, we propose an approach dubbed Perception Fused Iterative Tomography Reconstruction Engine, which integrates a convolutional neural network (CNN) with perceptional knowledge as a smart regularizer into an iterative solving engine. We employ the Alternating Direction Method of Multipliers to optimize the solution in both physics and image domains, thereby achieving a physically coherent and visually enhanced result. We demonstrate the effectiveness of the proposed approach using various experimental datasets obtained with different x-ray microscopy techniques. All show significantly improved reconstruction even with a missing wedge of over 100 degrees - a scenario where conventional methods fail. Notably, it also improves the reconstruction in case of sparse projections, despite the network not being specifically trained for that. This demonstrates the robustness and generality of our method of addressing commonly occurring challenges in 3D x-ray imaging applications for real-world problems.
Abstract:Fourier phase retrieval is essential for high-definition imaging of nanoscale structures across diverse fields, notably coherent diffraction imaging. This study presents the Single impliCit neurAl Network (SCAN), a tool built upon coordinate neural networks meticulously designed for enhanced phase retrieval performance. Bypassing the pitfalls of conventional iterative methods, which frequently face high computational loads and are prone to noise interference, SCAN adeptly connects object coordinates to their amplitude and phase within a unified network in an unsupervised manner. While many existing methods primarily use Fourier magnitude in their loss function, our approach incorporates both the predicted magnitude and phase, enhancing retrieval accuracy. Comprehensive tests validate SCAN's superiority over traditional and other deep learning models regarding accuracy and noise robustness. We also demonstrate that SCAN excels in the ptychography setting.