Abstract:Diffusion models have shown remarkable progress in various generative tasks such as image and video generation. This paper studies the problem of leveraging pretrained diffusion models for performing discriminative tasks. Specifically, we extend the discriminative capability of pretrained frozen generative diffusion models from the classification task to the more complex object detection task, by "inverting" a pretrained layout-to-image diffusion model. To this end, a gradient-based discrete optimization approach for replacing the heavy prediction enumeration process, and a prior distribution model for making more accurate use of the Bayes' rule, are proposed respectively. Empirical results show that this method is on par with basic discriminative object detection baselines on COCO dataset. In addition, our method can greatly speed up the previous diffusion-based method for classification without sacrificing accuracy. Code and models are available at https://github.com/LiYinqi/DIVE .
Abstract:Wide-range and fine-grained vehicle detection plays a critical role in enabling active safety features in intelligent driving systems. However, existing vehicle detection methods based on rectangular bounding boxes (BBox) often struggle with perceiving wide-range objects, especially small objects at long distances. And BBox expression cannot provide detailed geometric shape and pose information of vehicles. This paper proposes a novel wide-range Pseudo-3D Vehicle Detection method based on images from a single camera and incorporates efficient learning methods. This model takes a spliced image as input, which is obtained by combining two sub-window images from a high-resolution image. This image format maximizes the utilization of limited image resolution to retain essential information about wide-range vehicle objects. To detect pseudo-3D objects, our model adopts specifically designed detection heads. These heads simultaneously output extended BBox and Side Projection Line (SPL) representations, which capture vehicle shapes and poses, enabling high-precision detection. To further enhance the performance of detection, a joint constraint loss combining both the object box and SPL is designed during model training, improving the efficiency, stability, and prediction accuracy of the model. Experimental results on our self-built dataset demonstrate that our model achieves favorable performance in wide-range pseudo-3D vehicle detection across multiple evaluation metrics. Our demo video has been placed at https://www.youtube.com/watch?v=1gk1PmsQ5Q8.