Abstract:This study investigates how dynamical systems may be learned and modelled with a neuromorphic network which is itself a dynamical system. The neuromorphic network used in this study is based on a complex electrical circuit comprised of memristive elements that produce neuro-synaptic nonlinear responses to input electrical signals. To determine how computation may be performed using the physics of the underlying system, the neuromorphic network was simulated and evaluated on autonomous prediction of a multivariate chaotic time series, implemented with a reservoir computing framework. Through manipulating only input electrodes and voltages, optimal nonlinear dynamical responses were found when input voltages maximise the number of memristive components whose internal dynamics explore the entire dynamical range of the memristor model. Increasing the network coverage with the input electrodes was found to suppress other nonlinear responses that are less conducive to learning. These results provide valuable insights into how a practical neuromorphic network device can be optimised for learning complex dynamical systems using only external control parameters.
Abstract:Reservoir Computing (RC) with physical systems requires an understanding of the underlying structure and internal dynamics of the specific physical reservoir. In this study, physical nano-electronic networks with neuromorphic dynamics are investigated for their use as physical reservoirs in an RC framework. These neuromorphic networks operate as dynamic reservoirs, with node activities in general coupled to the edge dynamics through nonlinear nano-electronic circuit elements, and the reservoir outputs influenced by the underlying network connectivity structure. This study finds that networks with varying degrees of sparsity generate more useful nonlinear temporal outputs for dynamic RC compared to dense networks. Dynamic RC is also tested on an autonomous multivariate chaotic time series prediction task with networks of varying densities, which revealed the importance of network sparsity in maintaining network activity and overall dynamics, that in turn enabled the learning of the chaotic Lorenz63 system's attractor behavior.
Abstract:Recently studies on time-domain audio separation networks (TasNets) have made a great stride in speech separation. One of the most representative TasNets is a network with a dual-path segmentation approach. However, the original model called DPRNN used a fixed feature dimension and unchanged segment size throughout all layers of the network. In this paper, we propose a multi-scale feature fusion transformer network (MSFFT-Net) based on the conventional dual-path structure for single-channel speech separation. Unlike the conventional dual-path structure where only one processing path exists, adopting several iterative blocks with alternative intra-chunk and inter-chunk operations to capture local and global context information, the proposed MSFFT-Net has multiple parallel processing paths where the feature information can be exchanged between multiple parallel processing paths. Experiments show that our proposed networks based on multi-scale feature fusion structure have achieved better results than the original dual-path model on the benchmark dataset-WSJ0-2mix, where the SI-SNRi score of MSFFT-3P is 20.7dB (1.47% improvement), and MSFFT-2P is 21.0dB (3.45% improvement), which achieves SOTA on WSJ0-2mix without any data augmentation method.