Abstract:In modern interior design, the generation of personalized spaces frequently necessitates a delicate balance between rigid architectural structural constraints and specific stylistic preferences. However, existing multi-condition generative frameworks often struggle to harmonize these inputs, leading to "condition conflicts" where stylistic attributes inadvertently compromise the geometric precision of the layout. To address this challenge, we present DreamHome-Pano, a controllable panoramic generation framework designed for high-fidelity interior synthesis. Our approach introduces a Prompt-LLM that serves as a semantic bridge, effectively translating layout constraints and style references into professional descriptive prompts to achieve precise cross-modal alignment. To safeguard architectural integrity during the generative process, we develop a Conflict-Free Control architecture that incorporates structural-aware geometric priors and a multi-condition decoupling strategy, effectively suppressing stylistic interference from eroding the spatial layout. Furthermore, we establish a comprehensive panoramic interior benchmark alongside a multi-stage training pipeline, encompassing progressive Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL). Experimental results demonstrate that DreamHome-Pano achieves a superior balance between aesthetic quality and structural consistency, offering a robust and professional-grade solution for panoramic interior visualization.