Abstract:Understanding decision-making in multi-AI-agent frameworks is crucial for analyzing strategic interactions in network-effect-driven contexts. This study investigates how AI agents navigate network-effect games, where individual payoffs depend on peer participatio--a context underexplored in multi-agent systems despite its real-world prevalence. We introduce a novel workflow design using large language model (LLM)-based agents in repeated decision-making scenarios, systematically manipulating price trajectories (fixed, ascending, descending, random) and network-effect strength. Our key findings include: First, without historical data, agents fail to infer equilibrium. Second, ordered historical sequences (e.g., escalating prices) enable partial convergence under weak network effects but strong effects trigger persistent "AI optimism"--agents overestimate participation despite contradictory evidence. Third, randomized history disrupts convergence entirely, demonstrating that temporal coherence in data shapes LLMs' reasoning, unlike humans. These results highlight a paradigm shift: in AI-mediated systems, equilibrium outcomes depend not just on incentives, but on how history is curated, which is impossible for human.
Abstract:Motivation. Understanding the pan-cancer mutational landscape offers critical insights into the molecular mechanisms underlying tumorigenesis. While patient-level machine learning techniques have been widely employed to identify tumor subtypes, cohort-level clustering, where entire cancer types are grouped based on shared molecular features, has largely relied on classical statistical methods. Results. In this study, we introduce a novel unsupervised contrastive learning framework to cluster 43 cancer types based on coding mutation data derived from the COSMIC database. For each cancer type, we construct two complementary mutation signatures: a gene-level profile capturing nucleotide substitution patterns across the most frequently mutated genes, and a chromosome-level profile representing normalized substitution frequencies across chromosomes. These dual views are encoded using TabNet encoders and optimized via a multi-scale contrastive learning objective (NT-Xent loss) to learn unified cancer-type embeddings. We demonstrate that the resulting latent representations yield biologically meaningful clusters of cancer types, aligning with known mutational processes and tissue origins. Our work represents the first application of contrastive learning to cohort-level cancer clustering, offering a scalable and interpretable framework for mutation-driven cancer subtyping.