Abstract:Large language models (LLMs) have demonstrated excellent capabilities in the field of biomedical question answering, but their application in real-world clinical consultations still faces core challenges. Existing systems rely on a one-way information transmission mode where patients must fully describe their symptoms in a single round, leading to nonspecific diagnostic recommendations when complaints are vague. Traditional multi-turn dialogue methods based on supervised learning are constrained by static data-driven paradigms, lacking generalizability and struggling to intelligently extract key clinical information. To address these limitations, we propose DoctorAgent-RL, a reinforcement learning (RL)-based multi-agent collaborative framework that models medical consultations as a dynamic decision-making process under uncertainty. The doctor agent continuously optimizes its questioning strategy within the RL framework through multi-turn interactions with the patient agent, dynamically adjusting its information-gathering path based on comprehensive rewards from the Consultation Evaluator. This RL fine-tuning mechanism enables LLMs to autonomously develop interaction strategies aligned with clinical reasoning logic, rather than superficially imitating patterns in existing dialogue data. Notably, we constructed MTMedDialog, the first English multi-turn medical consultation dataset capable of simulating patient interactions. Experiments demonstrate that DoctorAgent-RL outperforms existing models in both multi-turn reasoning capability and final diagnostic performance, demonstrating practical value in assisting clinical consultations. https://github.com/JarvisUSTC/DoctorAgent-RL
Abstract:Vision-Language Models (VLMs) extend the capabilities of Large Language Models (LLMs) by incorporating visual information, yet they remain vulnerable to jailbreak attacks, especially when processing noisy or corrupted images. Although existing VLMs adopt security measures during training to mitigate such attacks, vulnerabilities associated with noise-augmented visual inputs are overlooked. In this work, we identify that missing noise-augmented training causes critical security gaps: many VLMs are susceptible to even simple perturbations such as Gaussian noise. To address this challenge, we propose Robust-VLGuard, a multimodal safety dataset with aligned / misaligned image-text pairs, combined with noise-augmented fine-tuning that reduces attack success rates while preserving functionality of VLM. For stronger optimization-based visual perturbation attacks, we propose DiffPure-VLM, leveraging diffusion models to convert adversarial perturbations into Gaussian-like noise, which can be defended by VLMs with noise-augmented safety fine-tuning. Experimental results demonstrate that the distribution-shifting property of diffusion model aligns well with our fine-tuned VLMs, significantly mitigating adversarial perturbations across varying intensities. The dataset and code are available at https://github.com/JarvisUSTC/DiffPure-RobustVLM.
Abstract:Knowledge graphs and large language models (LLMs) are key tools for biomedical knowledge integration and reasoning, facilitating structured organization of scientific articles and discovery of complex semantic relationships. However, current methods face challenges: knowledge graph construction is limited by complex terminology, data heterogeneity, and rapid knowledge evolution, while LLMs show limitations in retrieval and reasoning, making it difficult to uncover cross-document associations and reasoning pathways. To address these issues, we propose a pipeline that uses LLMs to construct a biomedical knowledge graph (BioStrataKG) from large-scale articles and builds a cross-document question-answering dataset (BioCDQA) to evaluate latent knowledge retrieval and multi-hop reasoning. We then introduce Integrated and Progressive Retrieval-Augmented Reasoning (IP-RAR) to enhance retrieval accuracy and knowledge reasoning. IP-RAR maximizes information recall through Integrated Reasoning-based Retrieval and refines knowledge via Progressive Reasoning-based Generation, using self-reflection to achieve deep thinking and precise contextual understanding. Experiments show that IP-RAR improves document retrieval F1 score by 20\% and answer generation accuracy by 25\% over existing methods. This framework helps doctors efficiently integrate treatment evidence for personalized medication plans and enables researchers to analyze advancements and research gaps, accelerating scientific discovery and decision-making.