Abstract:We propose a new hologram representation based on structured complex-valued 2D Gaussian primitives, which replaces per-pixel information storage and reduces the parameter search space by up to 10:1. To enable end-to-end training, we develop a differentiable rasterizer for our representation, integrated with a GPU-optimized light propagation kernel in free space. Our extensive experiments show that our method achieves up to 2.5x lower VRAM usage and 50% faster optimization while producing higher-fidelity reconstructions than existing methods. We further introduce a conversion procedure that adapts our representation to practical hologram formats, including smooth and random phase-only holograms. Our experiments show that this procedure can effectively suppress noise artifacts observed in previous methods. By reducing the hologram parameter search space, our representation enables a more scalable hologram estimation in the next-generation computer-generated holography systems.
Abstract:Effective crime linkage analysis is crucial for identifying serial offenders and enhancing public safety. To address limitations of traditional crime linkage methods in handling high-dimensional, sparse, and heterogeneous data, we propose a Siamese Autoencoder framework that learns meaningful latent representations and uncovers correlations in complex crime data. Using data from the Violent Crime Linkage Analysis System (ViCLAS), maintained by the Serious Crime Analysis Section of the UK's National Crime Agency, our approach mitigates signal dilution in sparse feature spaces by integrating geographic-temporal features at the decoder stage. This design amplifies behavioral representations rather than allowing them to be overshadowed at the input level, yielding consistent improvements across multiple evaluation metrics. We further analyze how different domain-informed data reduction strategies influence model performance, providing practical guidance for preprocessing in crime linkage contexts. Our results show that advanced machine learning approaches can substantially enhance linkage accuracy, improving AUC by up to 9% over traditional methods while offering interpretable insights to support investigative decision-making.
Abstract:Modeling the full properties of light, including both amplitude and phase, in 3D representations is crucial for advancing physically plausible rendering, particularly in holographic displays. To support these features, we propose a novel representation that optimizes 3D scenes without relying on intensity-based intermediaries. We reformulate 3D Gaussian splatting with complex-valued Gaussian primitives, expanding support for rendering with light waves. By leveraging RGBD multi-view images, our method directly optimizes complex-valued Gaussians as a 3D holographic scene representation. This eliminates the need for computationally expensive hologram re-optimization. Compared with state-of-the-art methods, our method achieves 30x-10,000x speed improvements while maintaining on-par image quality, representing a first step towards geometrically aligned, physically plausible holographic scene representations.
Abstract:Multi-color holograms rely on simultaneous illumination from multiple light sources. These multi-color holograms could utilize light sources better than conventional single-color holograms and can improve the dynamic range of holographic displays. In this letter, we introduce \projectname, the first learned method for estimating the optimal light source powers required for illuminating multi-color holograms. For this purpose, we establish the first multi-color hologram dataset using synthetic images and their depth information. We generate these synthetic images using a trending pipeline combining generative, large language, and monocular depth estimation models. Finally, we train our learned model using our dataset and experimentally demonstrate that \projectname significantly decreases the number of steps required to optimize multi-color holograms from $>1000$ to $70$ iteration steps without compromising image quality.