Abstract:We propose an efficient encrypted policy synthesis to develop privacy-preserving model-based reinforcement learning. We first demonstrate that the relative-entropy-regularized reinforcement learning framework offers a computationally convenient linear and ``min-free'' structure for value iteration, enabling a direct and efficient integration of fully homomorphic encryption with bootstrapping into policy synthesis. Convergence and error bounds are analyzed as encrypted policy synthesis propagates errors under the presence of encryption-induced errors including quantization and bootstrapping. Theoretical analysis is validated by numerical simulations. Results demonstrate the effectiveness of the RERL framework in integrating FHE for encrypted policy synthesis.