Abstract:Federated unlearning (FU) aims to remove a participant's data contributions from a trained federated learning (FL) model, ensuring privacy and regulatory compliance. Traditional FU methods often depend on auxiliary storage on either the client or server side or require direct access to the data targeted for removal-a dependency that may not be feasible if the data is no longer available. To overcome these limitations, we propose NoT, a novel and efficient FU algorithm based on weight negation (multiplying by -1), which circumvents the need for additional storage and access to the target data. We argue that effective and efficient unlearning can be achieved by perturbing model parameters away from the set of optimal parameters, yet being well-positioned for quick re-optimization. This technique, though seemingly contradictory, is theoretically grounded: we prove that the weight negation perturbation effectively disrupts inter-layer co-adaptation, inducing unlearning while preserving an approximate optimality property, thereby enabling rapid recovery. Experimental results across three datasets and three model architectures demonstrate that NoT significantly outperforms existing baselines in unlearning efficacy as well as in communication and computational efficiency.
Abstract:In the realm of real-world devices, centralized servers in Federated Learning (FL) present challenges including communication bottlenecks and susceptibility to a single point of failure. Additionally, contemporary devices inherently exhibit model and data heterogeneity. Existing work lacks a Decentralized FL (DFL) framework capable of accommodating such heterogeneity without imposing architectural restrictions or assuming the availability of public data. To address these issues, we propose a Decentralized Federated Mutual Learning (DFML) framework that is serverless, supports nonrestrictive heterogeneous models, and avoids reliance on public data. DFML effectively handles model and data heterogeneity through mutual learning, which distills knowledge between clients, and cyclically varying the amount of supervision and distillation signals. Extensive experimental results demonstrate consistent effectiveness of DFML in both convergence speed and global accuracy, outperforming prevalent baselines under various conditions. For example, with the CIFAR-100 dataset and 50 clients, DFML achieves a substantial increase of +17.20% and +19.95% in global accuracy under Independent and Identically Distributed (IID) and non-IID data shifts, respectively.