Abstract:Traffic simulators are widely used to study the operational efficiency of road infrastructure, but their rule-based approach limits their ability to mimic real-world driving behavior. Traffic intersections are critical components of the road infrastructure, both in terms of safety risk (nearly 28% of fatal crashes and 58% of nonfatal crashes happen at intersections) as well as the operational efficiency of a road corridor. This raises an important question: can we create a data-driven simulator that can mimic the macro- and micro-statistics of the driving behavior at a traffic intersection? Deep Generative Modeling-based trajectory prediction models provide a good starting point to model the complex dynamics of vehicles at an intersection. But they are not tested in a "live" micro-simulation scenario and are not evaluated on traffic engineering-related metrics. In this study, we propose traffic engineering-related metrics to evaluate generative trajectory prediction models and provide a simulation-in-the-loop pipeline to do so. We also provide a multi-headed self-attention-based trajectory prediction model that incorporates the signal information, which outperforms our previous models on the evaluation metrics.
Abstract:Traffic Intersections are vital to urban road networks as they regulate the movement of people and goods. However, they are regions of conflicting trajectories and are prone to accidents. Deep Generative models of traffic dynamics at signalized intersections can greatly help traffic authorities better understand the efficiency and safety aspects. At present, models are evaluated on computational metrics that primarily look at trajectory reconstruction errors. They are not evaluated online in a `live' microsimulation scenario. Further, these metrics do not adequately consider traffic engineering-specific concerns such as red-light violations, unallowed stoppage, etc. In this work, we provide a comprehensive analytics tool to train, run, and evaluate models with metrics that give better insights into model performance from a traffic engineering point of view. We train a state-of-the-art multi-vehicle trajectory forecasting model on a large dataset collected by running a calibrated scenario of a real-world urban intersection. We then evaluate the performance of the prediction models, online in a microsimulator, under unseen traffic conditions. We show that despite using ideally-behaved trajectories as input, and achieving low trajectory reconstruction errors, the generated trajectories show behaviors that break traffic rules. We introduce new metrics to evaluate such undesired behaviors and present our results.