Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!

Authors:Shuvendu Roy, Yasaman Parhizkar, Franklin Ogidi, Vahid Reza Khazaie, Michael Colacci, Ali Etemad, Elham Dolatabadi, Arash Afkanpour

Figures and Tables:

Abstract:We perform a comprehensive benchmarking of contrastive frameworks for learning multimodal representations in the medical domain. Through this study, we aim to answer the following research questions: (i) How transferable are general-domain representations to the medical domain? (ii) Is multimodal contrastive training sufficient, or does it benefit from unimodal training as well? (iii) What is the impact of feature granularity on the effectiveness of multimodal medical representation learning? To answer these questions, we investigate eight contrastive learning approaches under identical training setups, and train them on 2.8 million image-text pairs from four datasets, and evaluate them on 25 downstream tasks, including classification (zero-shot and linear probing), image-to-text and text-to-image retrieval, and visual question-answering. Our findings suggest a positive answer to the first question, a negative answer to the second question, and the benefit of learning fine-grained features. Finally, we make our code publicly available.

Via

Figures and Tables:

Abstract:It is a popular hypothesis in neuroscience that ganglion cells in the retina are activated by selectively detecting visual features in an observed scene. While ganglion cell firings can be predicted via data-trained deep neural nets, the networks remain indecipherable, thus providing little understanding of the cells' underlying operations. To extract knowledge from the cell firings, in this paper we learn an interpretable graph-based classifier from data to predict the firings of ganglion cells in response to visual stimuli. Specifically, we learn a positive semi-definite (PSD) metric matrix $\mathbf{M} \succeq 0$ that defines Mahalanobis distances between graph nodes (visual events) endowed with pre-computed feature vectors; the computed inter-node distances lead to edge weights and a combinatorial graph that is amenable to binary classification. Mathematically, we define the objective of metric matrix $\mathbf{M}$ optimization using a graph adaptation of large margin nearest neighbor (LMNN), which is rewritten as a semi-definite programming (SDP) problem. We solve it efficiently via a fast approximation called Gershgorin disc perfect alignment (GDPA) linearization. The learned metric matrix $\mathbf{M}$ provides interpretability: important features are identified along $\mathbf{M}$'s diagonal, and their mutual relationships are inferred from off-diagonal terms. Our fast metric learning framework can be applied to other biological systems with pre-chosen features that require interpretation.

Via