Abstract:Federated Multi-Task Learning (FMTL) enables multiple clients performing heterogeneous tasks without exchanging their local data, offering broad potential for privacy preserving multi-task collaboration. However, most existing methods focus on building personalized models for each client and unable to support the aggregation of multiple heterogeneous tasks into a unified model. As a result, in real-world scenarios where task objectives, label spaces, and optimization paths vary significantly, conventional FMTL methods struggle to achieve effective joint training. To address this challenge, we propose FedDEA (Federated Decoupled Aggregation), an update-structure-aware aggregation method specifically designed for multi-task model integration. Our method dynamically identifies task-relevant dimensions based on the response strength of local updates and enhances their optimization effectiveness through rescaling. This mechanism effectively suppresses cross-task interference and enables task-level decoupled aggregation within a unified global model. FedDEA does not rely on task labels or architectural modifications, making it broadly applicable and deployment-friendly. Experimental results demonstrate that it can be easily integrated into various mainstream federated optimization algorithms and consistently delivers significant overall performance improvements on widely used NYUD-V2 and PASCAL-Context. These results validate the robustness and generalization capabilities of FedDEA under highly heterogeneous task settings.
Abstract:Transformer has been extensively explored for hyperspectral image (HSI) classification. However, transformer poses challenges in terms of speed and memory usage because of its quadratic computational complexity. Recently, the Mamba model has emerged as a promising approach, which has strong long-distance modeling capabilities while maintaining a linear computational complexity. However, representing the HSI is challenging for the Mamba due to the requirement for an integrated spatial and spectral understanding. To remedy these drawbacks, we propose a novel HSI classification model based on a Mamba model, named MambaHSI, which can simultaneously model long-range interaction of the whole image and integrate spatial and spectral information in an adaptive manner. Specifically, we design a spatial Mamba block (SpaMB) to model the long-range interaction of the whole image at the pixel-level. Then, we propose a spectral Mamba block (SpeMB) to split the spectral vector into multiple groups, mine the relations across different spectral groups, and extract spectral features. Finally, we propose a spatial-spectral fusion module (SSFM) to adaptively integrate spatial and spectral features of a HSI. To our best knowledge, this is the first image-level HSI classification model based on the Mamba. We conduct extensive experiments on four diverse HSI datasets. The results demonstrate the effectiveness and superiority of the proposed model for HSI classification. This reveals the great potential of Mamba to be the next-generation backbone for HSI models. Codes are available at https://github.com/li-yapeng/MambaHSI .