Abstract:Quantum neural networks (QNNs) have attracted growing interest for scientific machine learning, yet in regression settings they often suffer from limited trainability under noisy gradients and ill-conditioned optimization. We propose a hybrid quantum-classical regression framework designed to mitigate these bottlenecks. Our model prepends a lightweight classical embedding that acts as a learnable geometric preconditioner, reshaping the input representation to better condition a downstream variational quantum circuit. Building on this architecture, we introduce a curriculum optimization protocol that progressively increases circuit depth and transitions from SPSA-based stochastic exploration to Adam-based gradient fine-tuning. We evaluate the approach on PDE-informed regression benchmarks and standard regression datasets under a fixed training budget in a simulator setting. Empirically, the proposed framework consistently improves over pure QNN baselines and yields more stable convergence in data-limited regimes. We further observe reduced structured errors that are visually correlated with oscillatory components on several scientific benchmarks, suggesting that geometric preconditioning combined with curriculum training is a practical approach for stabilizing quantum regression.




Abstract:Simulating microstructure evolution (MicroEvo) is vital for materials design but demands high numerical accuracy, efficiency, and physical fidelity. Although recent studies on deep learning (DL) offer a promising alternative to traditional solvers, the field lacks standardized benchmarks. Existing studies are flawed due to a lack of comparing specialized MicroEvo DL models with state-of-the-art spatio-temporal architectures, an overemphasis on numerical accuracy over physical fidelity, and a failure to analyze error propagation over time. To address these gaps, we introduce MicroEvoEval, the first comprehensive benchmark for image-based microstructure evolution prediction. We evaluate 14 models, encompassing both domain-specific and general-purpose architectures, across four representative MicroEvo tasks with datasets specifically structured for both short- and long-term assessment. Our multi-faceted evaluation framework goes beyond numerical accuracy and computational cost, incorporating a curated set of structure-preserving metrics to assess physical fidelity. Our extensive evaluations yield several key insights. Notably, we find that modern architectures (e.g., VMamba), not only achieve superior long-term stability and physical fidelity but also operate with an order-of-magnitude greater computational efficiency. The results highlight the necessity of holistic evaluation and identify these modern architectures as a highly promising direction for developing efficient and reliable surrogate models in data-driven materials science.