Abstract:Designing analog circuits from performance specifications is a complex, multi-stage process encompassing topology selection, parameter inference, and layout feasibility. We introduce FALCON, a unified machine learning framework that enables fully automated, specification-driven analog circuit synthesis through topology selection and layout-constrained optimization. Given a target performance, FALCON first selects an appropriate circuit topology using a performance-driven classifier guided by human design heuristics. Next, it employs a custom, edge-centric graph neural network trained to map circuit topology and parameters to performance, enabling gradient-based parameter inference through the learned forward model. This inference is guided by a differentiable layout cost, derived from analytical equations capturing parasitic and frequency-dependent effects, and constrained by design rules. We train and evaluate FALCON on a large-scale custom dataset of 1M analog mm-wave circuits, generated and simulated using Cadence Spectre across 20 expert-designed topologies. Through this evaluation, FALCON demonstrates >99\% accuracy in topology inference, <10\% relative error in performance prediction, and efficient layout-aware design that completes in under 1 second per instance. Together, these results position FALCON as a practical and extensible foundation model for end-to-end analog circuit design automation.
Abstract:Automating analog and radio-frequency (RF) circuit design using machine learning (ML) significantly reduces the time and effort required for parameter optimization. This study explores supervised ML-based approaches for designing circuit parameters from performance specifications across various circuit types, including homogeneous and heterogeneous designs. By evaluating diverse ML models, from neural networks like transformers to traditional methods like random forests, we identify the best-performing models for each circuit. Our results show that simpler circuits, such as low-noise amplifiers, achieve exceptional accuracy with mean relative errors as low as 0.3% due to their linear parameter-performance relationships. In contrast, complex circuits, like power amplifiers and voltage-controlled oscillators, present challenges due to their non-linear interactions and larger design spaces. For heterogeneous circuits, our approach achieves an 88% reduction in errors with increased training data, with the receiver achieving a mean relative error as low as 0.23%, showcasing the scalability and accuracy of the proposed methodology. Additionally, we provide insights into model strengths, with transformers excelling in capturing non-linear mappings and k-nearest neighbors performing robustly in moderately linear parameter spaces, especially in heterogeneous circuits with larger datasets. This work establishes a foundation for extending ML-driven design automation, enabling more efficient and scalable circuit design workflows.
Abstract:Analog and radio-frequency circuit design requires extensive exploration of both circuit topology and parameters to meet specific design criteria like power consumption and bandwidth. Designers must review state-of-the-art topology configurations in the literature and sweep various circuit parameters within each configuration. This design process is highly specialized and time-intensive, particularly as the number of circuit parameters increases and the circuit becomes more complex. Prior research has explored the potential of machine learning to enhance circuit design procedures. However, these studies primarily focus on simple circuits, overlooking the more practical and complex analog and radio-frequency systems. A major obstacle for bearing the power of machine learning in circuit design is the availability of a generic and diverse dataset, along with robust metrics, which are essential for thoroughly evaluating and improving machine learning algorithms in the analog and radio-frequency circuit domain. We present AICircuit, a comprehensive multi-level dataset and benchmark for developing and evaluating ML algorithms in analog and radio-frequency circuit design. AICircuit comprises seven commonly used basic circuits and two complex wireless transceiver systems composed of multiple circuit blocks, encompassing a wide array of design scenarios encountered in real-world applications. We extensively evaluate various ML algorithms on the dataset, revealing the potential of ML algorithms in learning the mapping from the design specifications to the desired circuit parameters.
Abstract:As fifth-generation (5G) and upcoming sixth-generation (6G) communications exhibit tremendous demands in providing high data throughput with a relatively low latency, millimeter-wave (mmWave) technologies manifest themselves as the key enabling components to achieve the envisioned performance and tasks. In this context, mmWave integrated circuits (IC) have attracted significant research interests over the past few decades, ranging from individual block design to complex system design. However, the highly nonlinear properties and intricate trade-offs involved render the design of analog or RF circuits a complicated process. The rapid evolution of fabrication technology also results in an increasingly long time allocated in the design process due to more stringent requirements. In this thesis, 28-GHz transceiver circuits are first investigated with detailed schematics and associated performance metrics. In this case, two target systems comprising heterogeneous individual blocks are selected and demonstrated on both the transmitter and receiver sides. Subsequently, some conventional and large-scale machine learning (ML) approaches are integrated into the design pipeline of the chosen systems to predict circuit parameters based on desired specifications, thereby circumventing the typical time-consuming iterations found in traditional methods. Finally, some potential research directions are discussed from the perspectives of circuit design and ML algorithms.