Abstract:Estimating individual-level treatment effect from observational data is a fundamental problem in causal inference and has attracted increasing attention in the fields of education, healthcare, and public policy.In this work, we concentrate on the study of disentangled representation methods that have shown promising outcomes by decomposing observed covariates into instrumental, confounding, and adjustment factors. However, most of the previous work has primarily revolved around generative models or hard decomposition methods for covariates, which often struggle to guarantee the attainment of precisely disentangled factors. In order to effectively model different causal relationships, we propose a novel treatment effect estimation algorithm that incorporates a mixture of experts with multi-head attention and a linear orthogonal regularizer to softly decompose the pre-treatment variables, and simultaneously eliminates selection bias via importance sampling re-weighting techniques. We conduct extensive experiments on both public semi-synthetic and real-world production datasets. The experimental results clearly demonstrate that our algorithm outperforms the state-of-the-art methods focused on individual treatment effects.
Abstract:Hyperbolic embeddings are a class of representation learning methods that offer competitive performances when data can be abstracted as a tree-like graph. However, in practice, learning hyperbolic embeddings of hierarchical data is difficult due to the different geometry between hyperbolic space and the Euclidean space. To address such difficulties, we first categorize three kinds of illness that harm the performance of the embeddings. Then, we develop a geometry-aware algorithm using a dilation operation and a transitive closure regularization to tackle these illnesses. We empirically validate these techniques and present a theoretical analysis of the mechanism behind the dilation operation. Experiments on synthetic and real-world datasets reveal superior performances of our algorithm.