Abstract:Prevailing image representation methods, including explicit representations such as raster images and Gaussian primitives, as well as implicit representations such as latent images, either suffer from representation redundancy that leads to heavy manual editing effort, or lack a direct mapping from latent variables to semantic instances or parts, making fine-grained manipulation difficult. These limitations hinder efficient and controllable image and video editing. To address these issues, we propose a hierarchical proxy-based parametric image representation that disentangles semantic, geometric, and textural attributes into independent and manipulable parameter spaces. Based on a semantic-aware decomposition of the input image, our representation constructs hierarchical proxy geometries through adaptive Bezier fitting and iterative internal region subdivision and meshing. Multi-scale implicit texture parameters are embedded into the resulting geometry-aware distributed proxy nodes, enabling continuous high-fidelity reconstruction in the pixel domain and instance- or part-independent semantic editing. In addition, we introduce a locality-adaptive feature indexing mechanism to ensure spatial texture coherence, which further supports high-quality background completion without relying on generative models. Extensive experiments on image reconstruction and editing benchmarks, including ImageNet, OIR-Bench, and HumanEdit, demonstrate that our method achieves state-of-the-art rendering fidelity with significantly fewer parameters, while enabling intuitive, interactive, and physically plausible manipulation. Moreover, by integrating proxy nodes with Position-Based Dynamics, our framework supports real-time physics-driven animation using lightweight implicit rendering, achieving superior temporal consistency and visual realism compared with generative approaches.
Abstract:3D animation is central to modern visual media, yet traditional production pipelines remain labor-intensive, expertise-demanding, and computationally expensive. Recent AIGC-based approaches partially automate asset creation and rigging, but they either inherit the heavy costs of full 3D pipelines or rely on video-synthesis paradigms that sacrifice 3D controllability and interactivity. We focus on single-image 3D animation generation and argue that progress is fundamentally constrained by a trade-off between rendering quality and 3D control. To address this limitation, we propose a lightweight 3D animation framework that decouples geometric control from appearance synthesis. The core idea is a 2D-3D aligned proxy representation that uses a coarse 3D estimate as a structural carrier, while delegating high-fidelity appearance and view synthesis to learned image-space generative priors. This proxy formulation enables 3D-aware motion control and interaction comparable to classical pipelines, without requiring accurate geometry or expensive optimization, and naturally extends to coherent background animation. Extensive experiments demonstrate that our method achieves efficient animation generation on low-power platforms and outperforms video-based 3D animation generation in identity preservation, geometric and textural consistency, and the level of precise, interactive control it offers to users.