Abstract:Intelligent Reflecting Surfaces (IRSs) have potential for significant performance gains in next-generation wireless networks but face key challenges, notably severe double-pathloss and complex multi-user scheduling due to hardware constraints. Active IRSs partially address pathloss but still require efficient scheduling in cell-level multi-IRS multi-user systems, whereby the overhead/delay of channel state acquisition and the scheduling complexity both rise dramatically as the user density and channel dimensions increase. Motivated by these challenges, this paper proposes a novel scheduling framework based on neural Channel Knowledge Map (CKM), designing Transformer-based deep neural networks (DNNs) to predict ergodic spectral efficiency (SE) from historical channel/throughput measurements tagged with user positions. Specifically, two cascaded networks, LPS-Net and SE-Net, are designed to predict link power statistics (LPS) and ergodic SE accurately. We further propose a low-complexity Stable Matching-Iterative Balancing (SM-IB) scheduling algorithm. Numerical evaluations verify that the proposed neural CKM significantly enhances prediction accuracy and computational efficiency, while the SM-IB algorithm effectively achieves near-optimal max-min throughput with greatly reduced complexity.
Abstract:Intelligent reflecting surface (IRS) is a promising paradigm to reconfigure the wireless environment for enhanced communication coverage and quality. However, to compensate for the double pathloss effect, massive IRS elements are required, raising concerns on the scalability of cost and complexity. This paper introduces a new architecture of quasi-static IRS (QS-IRS), which tunes element phases via mechanical adjustment or manually re-arranging the array topology. QS-IRS relies on massive production/assembly of purely passive elements only, and thus is suitable for ultra low-cost and large-scale deployment to enhance long-term coverage. To achieve this end, an IRS-aided area coverage problem is formulated, which explicitly considers the element radiation pattern (ERP), with the newly introduced shape masks for the mainlobe, and the sidelobe constraints to reduce energy leakage. An alternating optimization (AO) algorithm based on the difference-of-convex (DC) and successive convex approximation (SCA) procedure is proposed, which achieves shaped beamforming with power gains close to that of the joint optimization algorithm, but with significantly reduced computational complexity.
Abstract:Intelligent reflecting surface (IRS) is regarded as a revolutionary paradigm that can reconfigure the wireless propagation environment for enhancing the desired signal and/or weakening the interference, and thus improving the quality of service (QoS) for communication systems. In this paper, we propose an IRS-aided sectorized BS design where the IRS is mounted in front of a transmitter (TX) and reflects/reconfigures signal towards the desired user equipment (UE). Unlike prior works that address link-level analysis/optimization of IRS-aided systems, we focus on the system-level three-dimensional (3D) coverage performance in both single-/multiple-cell scenarios. To this end, a distance/angle-dependent 3D channel model is considered for UEs in the 3D space, as well as the non-isotropic TX beam pattern and IRS element radiation pattern (ERP), both of which affect the average channel power as well as the multi-path fading statistics. Based on the above, a general formula of received signal power in our design is obtained, along with derived power scaling laws and upper/lower bounds on the mean signal/interference power under IRS passive beamforming or random scattering. Numerical results validate our analysis and demonstrate that our proposed design outperforms the benchmark schemes with fixed BS antenna patterns or active 3D beamforming. In particular, for aerial UEs that suffer from strong inter-cell interference, the IRS-aided BS design provides much better QoS in terms of the ergodic throughput performance compared with benchmarks, thanks to the IRS-inherent double pathloss effect that helps weaken the interference.