Abstract:Thyroid cancer is the most common endocrine malignancy, and its incidence is rising globally. While ultrasound is the preferred imaging modality for detecting thyroid nodules, its diagnostic accuracy is often limited by challenges such as low image contrast and blurred nodule boundaries. To address these issues, we propose Nodule-DETR, a novel detection transformer (DETR) architecture designed for robust thyroid nodule detection in ultrasound images. Nodule-DETR introduces three key innovations: a Multi-Spectral Frequency-domain Channel Attention (MSFCA) module that leverages frequency analysis to enhance features of low-contrast nodules; a Hierarchical Feature Fusion (HFF) module for efficient multi-scale integration; and Multi-Scale Deformable Attention (MSDA) to flexibly capture small and irregularly shaped nodules. We conducted extensive experiments on a clinical dataset of real-world thyroid ultrasound images. The results demonstrate that Nodule-DETR achieves state-of-the-art performance, outperforming the baseline model by a significant margin of 0.149 in mAP@0.5:0.95. The superior accuracy of Nodule-DETR highlights its significant potential for clinical application as an effective tool in computer-aided thyroid diagnosis. The code of work is available at https://github.com/wjj1wjj/Nodule-DETR.
Abstract:Accurate detection of ultrasound nodules is essential for the early diagnosis and treatment of thyroid and breast cancers. However, this task remains challenging due to irregular nodule shapes, indistinct boundaries, substantial scale variations, and the presence of speckle noise that degrades structural visibility. To address these challenges, we propose a prior-guided DETR framework specifically designed for ultrasound nodule detection. Instead of relying on purely data-driven feature learning, the proposed framework progressively incorporates different prior knowledge at multiple stages of the network. First, a Spatially-adaptive Deformable FFN with Prior Regularization (SDFPR) is embedded into the CNN backbone to inject geometric priors into deformable sampling, stabilizing feature extraction for irregular and blurred nodules. Second, a Multi-scale Spatial-Frequency Feature Mixer (MSFFM) is designed to extract multi-scale structural priors, where spatial-domain processing emphasizes contour continuity and boundary cues, while frequency-domain modeling captures global morphology and suppresses speckle noise. Furthermore, a Dense Feature Interaction (DFI) mechanism propagates and exploits these prior-modulated features across all encoder layers, enabling the decoder to enhance query refinement under consistent geometric and structural guidance. Experiments conducted on two clinically collected thyroid ultrasound datasets (Thyroid I and Thyroid II) and two public benchmarks (TN3K and BUSI) for thyroid and breast nodules demonstrate that the proposed method achieves superior accuracy compared with 18 detection methods, particularly in detecting morphologically complex nodules.The source code is publicly available at https://github.com/wjj1wjj/Ultrasound-DETR.
Abstract:Depth estimation is a foundational component for 3D reconstruction in minimally invasive endoscopic surgeries. However, existing monocular depth estimation techniques often exhibit limited performance to the varying illumination and complex textures of the surgical environment. While powerful visual foundation models offer a promising solution, their training on natural images leads to significant domain adaptability limitations and semantic perception deficiencies when applied to endoscopy. In this study, we introduce EndoUFM, an unsupervised monocular depth estimation framework that innovatively integrating dual foundation models for surgical scenes, which enhance the depth estimation performance by leveraging the powerful pre-learned priors. The framework features a novel adaptive fine-tuning strategy that incorporates Random Vector Low-Rank Adaptation (RVLoRA) to enhance model adaptability, and a Residual block based on Depthwise Separable Convolution (Res-DSC) to improve the capture of fine-grained local features. Furthermore, we design a mask-guided smoothness loss to enforce depth consistency within anatomical tissue structures. Extensive experiments on the SCARED, Hamlyn, SERV-CT, and EndoNeRF datasets confirm that our method achieves state-of-the-art performance while maintaining an efficient model size. This work contributes to augmenting surgeons' spatial perception during minimally invasive procedures, thereby enhancing surgical precision and safety, with crucial implications for augmented reality and navigation systems.