Abstract:Retrieval-Augmented Generation (RAG) shows promise for enterprise knowledge work, yet it often underperforms in high-stakes decision settings that require deep synthesis, strict traceability, and recovery from underspecified prompts. One-pass retrieval-and-write pipelines frequently yield shallow summaries, inconsistent grounding, and weak mechanisms for completeness verification. We introduce ADORE (Adaptive Deep Orchestration for Research in Enterprise), an agentic framework that replaces linear retrieval with iterative, user-steered investigation coordinated by a central orchestrator and a set of specialized agents. ADORE's key insight is that a structured Memory Bank (a curated evidence store with explicit claim-evidence linkage and section-level admissible evidence) enables traceable report generation and systematic checks for evidence completeness. Our contributions are threefold: (1) Memory-locked synthesis - report generation is constrained to a structured Memory Bank (Claim-Evidence Graph) with section-level admissible evidence, enabling traceable claims and grounded citations; (2) Evidence-coverage-guided execution - a retrieval-reflection loop audits section-level evidence coverage to trigger targeted follow-up retrieval and terminates via an evidence-driven stopping criterion; (3) Section-packed long-context grounding - section-level packing, pruning, and citation-preserving compression make long-form synthesis feasible under context limits. Across our evaluation suite, ADORE ranks first on DeepResearch Bench (52.65) and achieves the highest head-to-head preference win rate on DeepConsult (77.2%) against commercial systems.
Abstract:The increasing computational demands of modern AI systems have exposed fundamental limitations of digital hardware, driving interest in alternative paradigms for efficient large-scale inference. Dense Associative Memory (DenseAM) is a family of models that offers a flexible framework for representing many contemporary neural architectures, such as transformers and diffusion models, by casting them as dynamical systems evolving on an energy landscape. In this work, we propose a general method for building analog accelerators for DenseAMs and implementing them using electronic RC circuits, crossbar arrays, and amplifiers. We find that our analog DenseAM hardware performs inference in constant time independent of model size. This result highlights an asymptotic advantage of analog DenseAMs over digital numerical solvers that scale at least linearly with the model size. We consider three settings of progressively increasing complexity: XOR, the Hamming (7,4) code, and a simple language model defined on binary variables. We propose analog implementations of these three models and analyze the scaling of inference time, energy consumption, and hardware. Finally, we estimate lower bounds on the achievable time constants imposed by amplifier specifications, suggesting that even conservative existing analog technology can enable inference times on the order of tens to hundreds of nanoseconds. By harnessing the intrinsic parallelism and continuous-time operation of analog circuits, our DenseAM-based accelerator design offers a new avenue for fast and scalable AI hardware.