Abstract:Accurate characterization of vascular geometry is essential for cardiovascular diagnosis and treatment planning. Traditional statistical shape modeling (SSM) methods rely on linear assumptions, limiting their expressivity and scalability to complex topologies such as multi-branch vascular structures. We introduce HUG-VAS, a Hierarchical NURBS Generative model for Vascular geometry Synthesis, which integrates NURBS surface parameterization with diffusion-based generative modeling to synthesize realistic, fine-grained aortic geometries. Trained with 21 patient-specific samples, HUG-VAS generates anatomically faithful aortas with supra-aortic branches, yielding biomarker distributions that closely match those of the original dataset. HUG-VAS adopts a hierarchical architecture comprising a denoising diffusion model that generates centerlines and a guided diffusion model that synthesizes radial profiles conditioned on those centerlines, thereby capturing two layers of anatomical variability. Critically, the framework supports zero-shot conditional generation from image-derived priors, enabling practical applications such as interactive semi-automatic segmentation, robust reconstruction under degraded imaging conditions, and implantable device optimization. To our knowledge, HUG-VAS is the first SSM framework to bridge image-derived priors with generative shape modeling via a unified integration of NURBS parameterization and hierarchical diffusion processes.
Abstract:Optimization and uncertainty quantification have been playing an increasingly important role in computational hemodynamics. However, existing methods based on principled modeling and classic numerical techniques have faced significant challenges, particularly when it comes to complex 3D patient-specific shapes in the real world. First, it is notoriously challenging to parameterize the input space of arbitrarily complex 3-D geometries. Second, the process often involves massive forward simulations, which are extremely computationally demanding or even infeasible. We propose a novel deep learning surrogate modeling solution to address these challenges and enable rapid hemodynamic predictions. Specifically, a statistical generative model for 3-D patient-specific shapes is developed based on a small set of baseline patient-specific geometries. An unsupervised shape correspondence solution is used to enable geometric morphing and scalable shape synthesis statistically. Moreover, a simulation routine is developed for automatic data generation by automatic meshing, boundary setting, simulation, and post-processing. An efficient supervised learning solution is proposed to map the geometric inputs to the hemodynamics predictions in latent spaces. Numerical studies on aortic flows are conducted to demonstrate the effectiveness and merit of the proposed techniques.